首页 > 论文 > 强激光与粒子束 > 30卷 > 6期(pp:65002--1)

二维弹塑性磁流体力学数值模拟

Two dimensional elastoplastic MHD numerical simulation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了研究物质弹塑性对磁驱动实验运动过程、不稳定性发展等的影响, 在MDSC2程序的基础上, 增加了弹塑性模块, 研制了包括弹塑性的磁流体力学程序, 并进行了弹塑性项影响的数值模拟和分析。数值模拟表明: 没有初始扰动时, 弹塑性项几乎不影响套筒内外半径的运动轨迹; 有初始扰动时, 弹塑性项对磁驱动固体套筒的Rayleigh-Tayor不稳定性有明显的抑制作用。

Abstract

In magnetically driven experiments, such as solid liner implosion, magnetically driven flyer plate emission and magnetically driven quasi-isentropic/impulse compression, the metal starts from a solid phase and gradually turns into liquid phase by ohmic heating. In order to study the effects of material hardness the solid phase has on those magnetically driven experiments, we have added an elastoplasticitic module to the two-dimensional magnetically driven simulation code (MDSC2). With this code, we carried out numerical simulations of the development of Rayleigh-Taylor (RT) instability in magnetically driven solid liner implosion. The numerical results show that while the elastoplasticitic term has little effect on the trajectories of the inner and outer radius of the solid liner without an initial disturbance, it suppresses significantly the RT instability growth of the magnetically driven solid liner with an initial disturbance.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O361.3

DOI:10.11884/hplpb201830.170306

所属栏目:脉冲功率技术

基金项目:国家自然科学基金项目(11405167, 11571293, 11672276); 中国工程物理研究院技术发展基金项目(2015B0201023)

收稿日期:2017-08-07

修改稿日期:2018-01-18

网络出版日期:--

作者单位    点击查看

阚明先:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999
王刚华:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999
肖波:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999
段书超:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999
杨龙:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999

联系人作者:阚明先(kanmx@caep.cn)

备注:阚明先(1971—), 男, 副研究员, 研究方向为磁流体力学数值模拟;

【1】Matzen M K, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Phys Plasmas, 2005,12:055503.

【2】Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Phys Rev Lett, 2001, 87:225501.

【3】Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Phys Plasmas, 2003, 10(4):1092-1099.

【4】Lemke R W, Knudson M D, Robinson A C, et al. Self-consistent, two-dimensional, magneto-hydrodynamic simulations of magnetically driven flyer plates[J]. Phys Plasmas, 2003, 10(5):1867-1874.

【5】Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. J Appl Phys, 2005, 98:073530.

【6】Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6):480-485.

【7】Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. J Appl Phys, 2014, 116:204903.

【8】Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. J Appl Phys, 2003, 94(7):4420-4431.

【9】Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Phys Rev Lett, 2003, 90:035505.

【10】Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69:144209.

【11】Frese M H. MACH2: A two-dimensional magneto-hydrodynamic simulation code for complex experimental configurations[R]. AMRC-R-874, 1987.

【12】Robinson A C, Brunner T A, Carroll S, et al. ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code[C]//46th AIAA Areospace Sciences Meeting and Exhibit. 2008.

【13】Chittenden J P, Lebedev S V, Jennings C A, et al. X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches[J]. Plasma Phys Control Fusion, 2004, 46:B457-B476.

【14】Weinwurm M, Bland S N, Chittenden J P. Metal liner-driven cylindrically convergent isentropic compression of cryogenic deuterium[J]. Journal of Physics, 2014, 500:082002.

【15】丁宁, 邬吉明, 杨震华, 等.Z箍缩内爆MRAED程序1维模拟分析[J].强激光与粒子束, 2008, 20(2):212-218.(Ding Ning, Wu Jiming, Yang Zhenghua, et al. Simulation of Z-pinch implosion using MARED code. High Power Laser and Particle Beams, 2008, 20(2):212-218)

【16】阚明先, 蒋吉昊, 王刚华, 等.套筒内爆ALE方法二维MHD数值模拟[J].四川大学学报, 2007, 44(1):91-96.(Kan Mingxian, Jiang Jihao, Wang Ganghua, et al. ALE simulation 2D MHD for liner. Journal of Sichuan University, 2007, 44(1):91-96)

【17】阚明先, 王刚华, 赵海龙, 等.磁驱动飞片二维磁流体力学数值模拟[J].强激光与粒子束, 2013, 25(8):2137-2141.(Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates. High Power Laser and Particle Beams, 2013, 25(8):2137-2141)

【18】段书超, 王刚华, 谢卫平, 等.FOI-PERFECT程序对电磁驱动高能量密度系统的三维弛豫磁流体力学模拟[J].强激光与粒子束, 2016, 28:045014.(Duan Shuchao, Wang Ganghua, Xie Weiping, et al. 3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems. High Power Laser and Particle Beams, 2016, 28:045014)

【19】Ding Ning, Zhang Yang, Xiao Delong, et al. Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM[J]. Matter and Radiation at Extremes, 2016, 1(3):135-152.

【20】阚明先, 张朝辉, 段书超, 等.“聚龙一号”装置上磁驱动铝飞片实验的数值模拟[J].强激光与粒子束, 2015, 27:125001.(Kan Mingxian, Zhang Zhaohui, Duan Shuchao, et al. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator. High Power Laser and Particle Beams, 2015, 27:125001)

【21】阚明先, 段书超, 王刚华, 等.自由面被烧蚀飞片的数值模拟[J].强激光与粒子束, 2017, 29:045003.(Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Numerical simulation of magnetically driven flyer plate of ablated free surface. High Power Laser and Particle Beams,2017, 29:045003)

【22】杨龙, 王刚华, 阚明先, 等.基于MDSC程序的Z箍缩内爆单温和三温模拟分析[J].高压物理学报, 2016, 30(1):64-70.(Yang Long, Wang Ganghua, Kan Mingxian, et al. A numerical simulation analysis of mono-temperature and tri-temperature models by MDSC program in Z-pinch implosion. Chinese Journal of High Pressure Physics, 2016, 30(1):64-70)

【23】Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high-strain rate[J]. J Appl Phys, 1980, 51(3):1498-1504.

【24】Yao Songlin, Pei Xiaoyang, Yu Jidong, et al. A dislocation-based explanation of quasi-elastic release in shock-loaded aluminum[J]. J Appl Phys, 2017, 121:035101.

【25】杨礼兵, 孙承纬, 廖海东, 等.高能密度物理实验装置FP-1及其应用[J].强激光与粒子束, 2002, 14(5):767-770.(Yang Libing, Sun Chengwei, Liao Haidong, et al. High energy density physics facility FP-1 and its applications. High Power Laser and Particle Beams, 2002, 14(5):767-770)

引用该论文

Kan Mingxian,Wang Ganghua,Xiao Bo,Duan Shuchao,Yang Long. Two dimensional elastoplastic MHD numerical simulation[J]. High Power Laser and Particle Beams, 2018, 30(6): 065002

阚明先,王刚华,肖波,段书超,杨龙. 二维弹塑性磁流体力学数值模拟[J]. 强激光与粒子束, 2018, 30(6): 065002

被引情况

【1】阚明先,段书超,王刚华,肖波,赵海龙. 磁驱动飞片发射实验结构系数初步研究. 强激光与粒子束, 2020, 32(8): 85002-85002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF