光谱学与光谱分析, 2018, 38 (4): 1256, 网络出版: 2018-06-12  

连续推扫计算光谱成像技术

Continuous Pushbroom Computational Imaging Spectrometry
作者单位
1 中国科学院光电研究院, 北京 100094
2 中国科学院计算光学成像技术重点实验室, 北京 100094
3 中国科学院大学, 北京 100049
4 国防科工局重大专项工程中心, 北京 100101
摘要
计算光谱成像技术具有高通量、 快照成像等优点, 但快照成像采样数据量不足, 导致利用压缩感知方法重构图谱精度很低。 通过对计算光谱成像技术各个环节进行系统研究, 提出一种新型的连续推扫计算光谱成像技术, 利用正交循环编码孔径代替传统的随机编码孔径, 通过逐行扫描方式及正交变换可完整重构图谱数据。 仿真和实际成像结果表明, 连续推扫计算光谱成像技术可消除图谱混叠影响, 理论上可完全重构图谱信息, 重构图谱精度明显优于传统的计算光谱成像技术。 相比国际上提出的多次曝光计算光谱成像技术, 连续推扫计算光谱成像技术不需要改变编码孔径与探测器间的相对位置, 也不需要凝视成像, 系统中没有活动元件, 稳定性高, 适用于常规航空航天遥感推扫成像。
Abstract
Computational imaging spectrometry (CIS) has drawn great attention in recent years. It has the advantages of high optical throughput, snapshot imaging and so on. On the other hand, CIS has the disadvantage of insufficiency in sparse sampling which reduce the accuracy of reconstructed spatial-spectral data. By analyzing the optical property of CIS, a continuous pushbroom computational imaging spectrometry (CPCIS) is presented. In CPCIS, the orthogonal cyclic coded aperture was used, and the continuous scanning line by line was implemented through platform moving. The entire spatial-spectral data was reconstructed by orthogonal inversion. According to the imaging simulation and experiment, the aliasing in spatial-spectral image was eliminated, and the reconstructed image was well satisfied. Comparing to multiframe CIS, CPCIS has no moveable element, which can image without staring the object, thus it is suitable for the airborne and spaceborne remote sensing applications.

相里斌, 吕群波, 刘扬阳, 孙建颖, 王建威, 姚涛, 裴琳琳, 李伟艳. 连续推扫计算光谱成像技术[J]. 光谱学与光谱分析, 2018, 38(4): 1256. XIANGLI Bin, L Qun-bo, LIU Yang-yang, SUN Jian-ying, WANG Jian-wei, YAO Tao, PEI Lin-lin, LI Wei-yan. Continuous Pushbroom Computational Imaging Spectrometry[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1256.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!