首页 > 论文 > 光学学报 > 38卷 > 7期(pp:711001--1)

基于邻域相似度的压缩感知鬼成像

Compressive Sensing Ghost Imaging Based on Neighbor Similarity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了提高压缩感知鬼成像的成像质量以及解决低采样率条件下成像失真度高的问题,提出一种基于邻域相似度的鬼成像(NSGI)方案。邻域相似度体现在图像像素间的关联性,携带关于物体结构的重要信息,在分析压缩鬼成像原理的基础上,利用邻域相似度来评价待探测目标。根据贪婪算法的原理,采用邻域相似度优化图像重构过程,并设置相关度阈值降低计算的复杂度。仿真和实验结果均表明,与传统方法相比,该方案可以在低采样率条件下获得高质量低失真度的图像,有利于推动鬼成像技术的实用化。

Abstract

In order to improve the imaging quality of ghost imaging and solve the problem of high distortion factor under low sampling ratio, we propose a compressive sensing ghost imaging method based on neighbor similarity(NSGI). The neighbor similarity embodied in the correlation between image pixels contains abundant information regarding the spatial structure of the object. We analyze the principle of compressive sensing ghost imaging and use the neighbor similarity to evaluate undetected targets. According to the principle of greedy algorithm, we adopt the neighbor similarity to optimize the process of image reconstruction, and set up the threshold value of the correlation coefficient to reduce computation load and improve precision. The simulation and experimental results show that compared with the traditional ghost imaging, NSGI can obtain high-quality images based on a low sampling frequency, which will further facilitate the practical application of ghost imaging.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.0711001

所属栏目:成像系统

基金项目:国家自然科学基金(61271376)、领域基金(6140415030116DZ63001)

收稿日期:2017-12-10

修改稿日期:2018-01-24

网络出版日期:--

作者单位    点击查看

陈熠:国防科技大学脉冲功率激光技术国家重点实验室, 安徽 合肥 230037光电信息控制和安全技术重点实验室, 天津 300450
樊祥:国防科技大学脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
程玉宝:国防科技大学脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
程正东:国防科技大学脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
梁振宇:国防科技大学脉冲功率激光技术国家重点实验室, 安徽 合肥 230037

联系人作者:樊祥(fanxianglxl@163.com)

备注:陈熠(1992-),男,博士研究生,主要从事关联成像方面的研究。E-mail: lishuichenyi@sina.com

【1】Luigi A L. "Ghost imaging": fundamental and applicative aspects[J]. Istituto Lombardo, 2015, 147: 139-148.

【2】Erkmen B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 2012, 29(5): 782-789.

【3】Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

【4】Wang J R, Shan Z Y, Zhang Y. Methodology analysis on stochastic radiation field of radar correlated imaging[J]. Acta Optica Sinica, 2017, 37(8): 0811004.
王靖茹, 山卓玉, 张勇. 构造雷达关联成像随机辐射场的方法分析[J]. 光学学报, 2017, 37(8): 0811004.

【5】Pelliccia D, Rack A, Scheel M, et al. Experimental X-ray ghost imaging[J]. Physical Review Letters, 2016, 117(11): 113902.

【6】Clemente P, Durán V, Torres-Company V, et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 2010, 35(14): 2391-2393.

【7】Wang X P, Lin Z H. Microwave surveillance based on ghost imaging and distributed antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1831-1834.

【8】Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429.

【9】Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.

【10】Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physics Review Letters, 2010, 104(25): 253603.

【11】Sun B Q, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20(15): 16892-16901.

【12】Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110.

【13】Kuplicki K, Chan K W C. High-order ghost imaging using non-Rayleigh speckle sources[J]. Optics Express, 2016, 24(23): 26766-26776.

【14】Lu M H, Shen X, Han S S. Ghost imaging via compressive sampling based on digital micromirror device[J]. Acta Optica Sinica, 2011, 31(7): 0711002.
陆明海, 沈夏, 韩申生. 基于数字微镜器件的压缩感知关联成像研究[J]. 光学学报, 2011, 31(7): 0711002.

【15】Chen J, Bo Z W, Han S S. Sparsity-based ghost imaging with Gaussian-amplitude modulation[J]. Acta Optica Sinica, 2013, 33(9): 0911003.
陈洁, 薄遵望, 韩申生. 高斯振幅调制下基于稀疏性的鬼成像[J]. 光学学报, 2013, 33(9): 0911003.

【16】Xu X Y, Li E R, Shen X, et al. Optimization of speckle patterns in ghost imaging via sparse constraints by mutual coherence minimization[J]. Chinese Optics Letters, 2015, 13(7): 071101.

【17】Ren Y M, Zhang Y N, Li Y. Advances and perspective on compressed sensing and application on image processing[J]. Acta Automatica Sinica, 2014, 40(8): 1563-1575.
任越美, 张艳宁, 李映. 压缩感知及其图像处理应用研究进展与展望[J]. 自动化学报, 2014, 40(8): 1563-1575.

【18】Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.

【19】Yu H, Li E R, Gong W L, et al. Structured image reconstruction for three-dimensional ghost imaging lidar[J]. Optics Express, 2015, 23(11): 14541-14551.

【20】Huang H, Zheng X L. Hyperspectral image classification with combination of weighted spatial-spectral and KNN[J]. Optics and Precision Engineering, 2016, 24(4): 873-881.
黄鸿, 郑新磊. 加权空-谱与最近邻分类器相结合的高光谱图像分类[J]. 光学 精密工程, 2016, 24(4): 873-881.

【21】Li J H, Yang D Y, Luo B, et al. Image quality recovery in binary ghost imaging by adding random noise[J]. Optics Letters, 2017, 42(8): 1640-1643.

【22】Yang X, Zhang Y, Yang C H, et al. Improve quality of ghost imaging with multi-wavelength source[J]. Chinese Journal of Lasers, 2016, 43(3): 0314002.
杨旭, 张勇, 杨成华, 等. 多波长光源提高关联成像的成像质量[J]. 中国激光, 2016, 43(3): 0314002.

【23】Wang Q, Ma L L, Li C R,et al. Improved method of dictionary atom selection in compressive sensing spectral reconstruction[J]. Acta Optica Sinica, 2016, 36(9): 0930002.
汪琪, 马灵玲, 李传荣, 等. 压缩感知光谱重构中的字典原子选取优化方法[J]. 光学学报, 2016, 36(9): 0930002.

引用该论文

Chen Yi,Fan Xiang,Cheng Yubao,Cheng Zhengdong,Liang Zhenyu. Compressive Sensing Ghost Imaging Based on Neighbor Similarity[J]. Acta Optica Sinica, 2018, 38(7): 0711001

陈熠,樊祥,程玉宝,程正东,梁振宇. 基于邻域相似度的压缩感知鬼成像[J]. 光学学报, 2018, 38(7): 0711001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF