首页 > 论文 > 光学学报 > 38卷 > 7期(pp:727001--1)

基于含楔角非线性晶体的高纠缠度纠缠源

Entanglement Source with High Entanglement Degree Based on Wedged Nonlinear Crystals

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

连续变量Einstein-Podolsky-Rosen纠缠态光场可由工作在阈值以下的非简并光学参量放大器获得,输入耦合镜、输出耦合镜及非线性晶体等光学元件对于偏振方向相互垂直的两束光场的镀膜参数存在差异,具体表现为输出耦合镜的光学镀膜对偏振方向相互垂直的输出光场的透射率不同。结合实验,详细讨论了镀膜参数差异对纠缠度的影响,为进一步提高纠缠态光场的纠缠度提供了参考。

Abstract

Continuous variable Einstein-Podolsky-Rosen entangled optical fields can be obtained by a non-degenerate optical parametric amplifier (NOPA) operated below the threshold pump power. The optical coating parameters of optical components as input coupler, output coupler and nonlinear crystal for the two orthogonally polarized beams are different manifested as the transmissivity difference of optical coatings of the output coupler for two orthogonally polarized beams. The influence of the coating parameter difference on entanglement degree is discussed in detail based on the experimental research, which provides references for further improving the entanglement degree of entangled state light fields.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431.2

DOI:10.3788/aos201838.0727001

所属栏目:量子光学

基金项目:国家重点研发计划项目(2016YFA0301402)、国家自然科学基金(11474190, 11654002、61775127)、山西青年三晋学者项目、山西省回国留学人员科研资助项目

收稿日期:2018-01-18

修改稿日期:2018-02-05

网络出版日期:--

作者单位    点击查看

周瑶瑶:太原师范学院物理系, 山西 太原 030031
蔚娟:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
闫智辉:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
贾晓军:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006

联系人作者:周瑶瑶(zhouyy@tynu.edu.cn)

备注:周瑶瑶(1989-),女,博士,讲师,主要从事量子光学与量子信息方面的研究。E-mail: zhouyy@tynu.edu.cn

【1】Furusawa A, Sorensen J L, Braustein S L, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(5389): 706-709.

【2】Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390: 575-579.

【3】Gottesman D, Preskill J. Secure quantum key distribution using squeezed states[J]. Physical Review A, 2001, 63(2): 022309.

【4】Yukawa M, Benichi H, Furusawa A. High-fidelity continuous-variable quantum teleportation toward multi-step quantum operations[J]. Physical Review A, 2008, 77(2): 022314.

【5】Li X Y, Pan Q, Jing J T, et al. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam[J]. Physical Review Letters, 2002, 88(4): 047904.

【6】Jia X J, Su X L, Pan Q, et al. Experimental demonstration of unconditional entanglement swapping for continuous variables[J]. Physical Review Letters, 2004, 93(25): 250503.

【7】Mattle K, Weinfurter H, Kwiat P G, et al. Dense coding in experimental quantum communication[J]. Physical Review Letters, 1996, 76(25): 4656-4659.

【8】Braunstein S L, Kimble H J. Densecoding for continuous variables[J]. Physical Review A, 2000, 61(4): 042302.

【9】Zhang J, Peng K C. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state[J]. Physical Review A, 2000, 62(6): 064302.

【10】Shor P W. Algorithms for quantum computing: Discrete log and factoring[C]. Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994: 124-134.

【11】Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509.

【12】Grover L K. Quantum computers can search rapidly by using almost any transformation[J]. Physical Review Letters, 1998, 80(19): 4329-4332.

【13】Zhao Y P, Hao S H, Su X L, et al. Generation system of continuous-variable six-partite and eight-partite star cluster entangled states[J]. Acta Optica Sinica, 2012, 32(6): 0627002.
赵亚平, 郝树宏, 苏晓龙, 等. 连续变量六组份和八组份星型Cluster纠缠态光场产生系统[J]. 光学学报, 2012, 32(6): 0627002.

【14】Zhang M, Zhou Y Y, Li F, et al. Realization of low threshold operation of NOPA with wedged KTP crystal[J]. Acta Optica Sinica, 2014, 34(3): 0327001.
张敏, 周瑶瑶, 李芳, 等. 利用楔角KTP晶体实现低阈值非简并光学参量放大器的运转[J]. 光学学报, 2014, 34(3): 0327001.

【15】Li Q, Deng X W, Zhang Q, et al. Experimental preparation of a pure two-mode squeezed state[J]. Acta Optica Sinica, 2016, 36(4): 0427001.
李强, 邓晓玮, 张强, 等. 实验制备纯的双模压缩态[J]. 光学学报, 2016, 36(4): 0427001.

【16】Wu L, Liu Y H, Deng R J, et al. Experimental preparation of bipartite polarization entangled optical fields at 795 nm[J]. Acta Optica Sinica, 2017, 37(5): 0527001.
吴量, 刘艳红, 邓瑞婕, 等. 795 nm两组份偏振纠缠光场的实验制备[J]. 光学学报, 2017, 37(5): 0527001.

【17】Peng K C, Jia X J, Su X L, et al. Optical manipulations of quantum states with continuous variables[J]. Acta Optica Sinica, 2011, 31(9): 0900107.
彭堃墀, 贾晓军, 苏晓龙, 等. 连续变量量子态的光学操控[J]. 光学学报, 2011, 31(9): 0900107.

【18】Jia X J, Su X L, Pan Q, et al. Experimental generation of two EPR entangled states with classical coherence[J]. Acta Physica Sinica, 2005, 54(6): 2717-2722.
贾晓军, 苏晓龙, 潘庆, 等. 具有经典相干性的两组EPR纠缠态光场的实验产生[J]. 物理学报, 2005, 54(6): 2717-2722.

【19】Zhao C Y, Tan W H. Quantum fluctuations in the time-dependent linearly driven degenerate parametric amplification[J]. Acta Physica Sinica, 2005, 54(10): 4526-4531.
赵超樱, 谭维翰. 含时的线性驱动简并参量放大系统的量子起伏[J]. 物理学报, 2005, 54(10): 4526-4531.

【20】Wang Y, Su X L, Shen H, et al. Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters[J]. Physical Review A, 2010, 81(2): 022311.

【21】Ou Z Y, Pereira S F, Kimble H J, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Physical Review Letters, 1992, 68(25): 3663-3666.

【22】Zhang Y, Wang H, Li X Y, et al. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier[J]. Physical Review A, 2000, 62(2): 023813.

【23】Bowen W P, Schnabel R, Lam P K, et al. Experimental characterization of continuous-variable entanglement[J]. Physical Review A, 2004, 69(1): 012304.

【24】Laurat J, Coudreau T, Keller G, et al. Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies[J]. Physical Review A, 2004, 70(4): 042315.

【25】Takei N, Yonezawa H, Aoki T, et al. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables[J]. Physical Review Letters, 2005, 94(22): 220502.

【26】Wang Y, Shen H, Jin X L, et al. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier[J]. Optics Express, 2010, 18(6): 6149-6155.

【27】Yan Z H, Jia X J, Su X L, et al. Cascaded entanglement enhancement[J]. Physical Review A, 2012, 85(4): 040305.

【28】Zhou Y Y, Jia X J, Li F, et al. Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal[J]. Optics Express, 2015, 23(4): 4952-4959.

【29】Takeno Y, Yukawa M, Yonezawa H, et al. Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement[J]. Optics Express, 2007, 15: 4321-4327.

【30】Vahlbruch H, Mehmet M, Chelkowski S, et al. Observation of squeezed light with 10-dB quantum-noise reduction[J]. Physical Review Letters, 2008, 100(3): 033602.

【31】Duan L M, Giedke G, Cirac J I, et al. Inseparable criterion for continuous variable systems[J]. Physical Review Letters, 2000, 84(12): 2722-2725.

【32】Simon R. Peres-Horodecki separability criterion for continuous variable systems[J]. Physical Review Letters, 2000, 84(10): 2726-2729.

【33】Jin X L, Su J, Zheng Y H. Influence of the non-ideal balanced homodyne detection on the measured squeezing degree[J]. Acta Optica Sinica, 2016, 36(10): 1027001.
靳晓丽, 苏静, 郑耀辉. 非理想平衡零拍探测系统对实测压缩度的影响[J]. 光学学报, 2016, 36(10): 1027001.

引用该论文

Zhou Yaoyao,Yu Juan,Yan Zhihui,Jia Xiaojun. Entanglement Source with High Entanglement Degree Based on Wedged Nonlinear Crystals[J]. Acta Optica Sinica, 2018, 38(7): 0727001

周瑶瑶,蔚娟,闫智辉,贾晓军. 基于含楔角非线性晶体的高纠缠度纠缠源[J]. 光学学报, 2018, 38(7): 0727001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF