首页 > 论文 > 光学学报 > 38卷 > 7期(pp:728002--1)

航空线阵摆扫式相机成像仿真

Imaging Simulation of Airborne Linear Whiskbroom Camera

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

成像仿真是相机研制必不可缺的步骤。航空线阵摆扫式相机具有距离远、成像倾角大的特点,容易导致成像仿真过程中坐标投影计算迭代不收敛。针对这一问题,提出一种视向量分段迭代的坐标投影计算方法。首先将迭代窗口内的视向量进行分段,根据像点坐标和其所在扫描行的外方位元素计算各分段处的高程与对应的地面点的高程之差,寻找差值最小的分段;然后在该分段处继续构建迭代窗口进行计算,直至高程差值的最小值小于给定的阈值,得到像点坐标对应的地面点三维坐标;最后将该地面点对应的正射影像上的灰度值赋予模拟影像的像点,生成仿真影像。通过三组不同地形的实验数据成像仿真结果表明,该方法成像仿真的精度高于0.005 pixel,且其稳健性较高,能够适用于大倾角成像方式的成像仿真。

Abstract

Imaging simulation is an essential step in camera development. The aerial linear whiskbroom camera has the characteristics of long distance and large imaging angle, which easily leads to the coordinate projection calculation in the imaging simulation process is iteratively non-convergence. To solve this problem, a new iterative coordinate projection calculation method based on visual vector segmentation is proposed. Firstly, the visual vector is segmented in the iteration window, and then the elevation difference between each segmentation and the corresponding ground point is calculated according to the coordinates of the image point and the exterior orientation element of the scan line. The segmentation of minimum elevation difference is found. Then the iterative window continually built at the segmentation is calculated until the minimum elevation difference is less than the given threshold, thus the image coordinates corresponding to three-dimensional coordinates of the ground point are obtained. Finally, the gray value of the orthographic image is given to the simulated pixel point corresponding to the ground point to generate simulation images. The imaging simulation results of the experimental data from three different terrains show that the accuracy of this imaging simulation method is higher than 0.005 pixel. Its robustness is higher and it can be applied to the imaging simulation of large-angle imaging method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P236

DOI:10.3788/aos201838.0728002

所属栏目:遥感与传感器

基金项目:高分辨率对地观测系统重大专项(GFZX04032201-1-1)、地理信息工程国家重点实验室开放研究基金资助项目(SKLGIE2017-M-3-6)

收稿日期:2018-01-22

修改稿日期:2018-03-05

网络出版日期:--

作者单位    点击查看

莫德林:信息工程大学地理空间信息学院, 河南 郑州 450001地理信息工程国家重点实验室, 陕西 西安 710054
张永生:信息工程大学地理空间信息学院, 河南 郑州 450001
王涛:信息工程大学地理空间信息学院, 河南 郑州 450001
张艳:信息工程大学数据与目标工程学院, 河南 郑州 450001

联系人作者:张永生(yszhang2001@vip.163.com)

备注:莫德林(1988-),男,博士研究生,主要从事航空航天相机几何处理方面的研究。E-mail: steven.mo@whu.edu.cn

【1】Yue Q X. Research on image simulation of satellite three-line-array TDI CCD camera[D]. Wuhan: Wuhan University, 2011.
岳庆兴. 卫星三线阵TDI CCD相机成像仿真研究[D]. 武汉: 武汉大学, 2011.

【2】Jiang W S, Zhang J Q, Zhang Z X. Simulation of three-line CCD satellite images from given orthoimage and DEM[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 414-419.
江万寿, 张剑清, 张祖勋. 三线阵CCD卫星影像的模拟研究[J]. 武汉大学学报·信息科学版, 2002, 27(4): 414-419.

【3】Wang L X, Cui W Y, Yi W N, et al. Acquisition method of zero stadia standard image for satellite imaging simulation[J]. Acta Optica Sinica, 2018, 38(1): 0128002.
汪兰霞, 崔文煜, 易维宁, 等. 卫星成像仿真中零视距标准图的获取方法[J]. 光学学报, 2018, 38(1): 0128002.

【4】Shi Q S, Lan C Z, Xu Q, et al. Real-time imaging simulation of optical earth observation satellites in orbit[J]. Journal of System Simulation, 2014, 26(10): 2535-2540.
施群山, 蓝朝桢, 徐青, 等. 光学对地观测卫星在轨成像实时模拟方法[J]. 系统仿真学报, 2014, 26(10): 2535-2540.

【5】Sander J S, Brown S D. Utilization of DIRSIG in support of real-time infrared scene generation[J]. SPIE, 2000, 4029: 278-285.

【6】Arnold P S, Brown S D, Schot J R. Hyperspectral simulation of chemical weapon dispersal patterns using DIRSIG[J]. SPIE, 2000, 4028: 288-298.

【7】Gasser J, Blonski S, Cao C, et al. Nasa′s virtual product laboratory: an overview[C]. Las Vegas: Proceedings of the International Symposium on Spectral Sensing Research, 1999: 152-169.

【8】Anko B, Lorenz W, Keller P, et al. SENSOR: a tool for the simulation of hyperspectral remote sensing systems[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2001, 55(5): 299-312.

【9】David C A. Real-time visualization for sensors[J]. SPIE, 1996, 2741: 232-241.

【10】Gu Y L, Zhang D Y, Yi W N, et al. Simulation of space optical remote sensor imaging based on aviation image[J]. Journal of System Simulation, 2008, 20(14): 3730-3732.
顾有林, 张冬英, 易维宁, 等. 基于航空图像的航天光学遥感器成像的仿真[J]. 系统仿真学报, 2008, 20(14): 3730-3732.

【11】Xu Y. Research on imaging mechanism and image simulation of airborne three-line scanner[D]. Wuhan: Wuhan University, 2004.
许宇. 机载三线阵CCD传感器成像机理及影像模拟研究[D]. 武汉:武汉大学, 2004.

【12】Ebner H, Kornus W, Strunz G, et al. Simulation study on point determination using MOMS-02/D2 imagery[J]. Photogrammetric Engineering & Remote Sensing, 1991, 57(10): 1315-1320.

【13】Li R, Zhou G, Schmidt N J, et al. Photogrammetric processing of high-resolution airborne and satellite linear array stereo images for mapping applications[J]. International Journal of Remote Sensing, 2002, 23(20): 4451-4473.

【14】Liu S. Selection of optimum resolution of simulation base map from space remote sensing image[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
刘帅. 航天遥感图像仿真底图最佳分辨率的选择[D]. 成都:电子科技大学, 2014.

【15】Miao Z, He B, Wang J Q, et al. Modeling of space camera for whiskbroom imaging and analysis of pendulum mirror angular velocity residual[J]. Spacecraft Recovery & Remote Sensing, 2015, 36(6): 39-47.
苗壮, 何斌, 王俊琦, 等. 空间相机摆扫成像建模及摆镜角速度残差分析[J]. 航天返回与遥感, 2015, 36(6): 39-47.

【16】Tian H Y, Liu M. The forward image motion compensating scheme of aerial camera based on scanning mirror[J]. Opto-Electronic Engineering, 2014, 41(9): 20-24.
田海英, 刘明. 基于扫描反射镜的航空相机前向像移补偿[J]. 光电工程, 2014, 41(9): 20-24.

【17】Zhao J X, Zhang T, Yang Y M, et al. Image motion velocity filed of TDI-CCD aerial panoramic camera[J]. Acta Optica Sinica, 2014, 34(7): 0728003.
赵嘉鑫, 张涛, 杨永明, 等. TDI-CCD全景航空相机的像移速度场计算模型研究[J]. 光学学报, 2014, 34(7): 0728003.

【18】Wang P, Tian D P, Xu N, et al. Analysis and compensation of image rotation in internally mounted scanning system for aerial electric-optical reconnaissance platform[J]. Acta Optica Sinica, 2017, 37(9): 0908001.
王平, 田大鹏, 徐宁, 等. 航空光电侦察平台内藏式扫描系统像旋分析及补偿[J]. 光学学报, 2017, 37(9): 0908001.

【19】Liu B, Jia J Q, Ding Y L, et al. Oblique distance defocus compensation for oblique photographic airborne camera[J]. Optics and Precision Engineering, 2014, 22(5): 1274-1279.
刘波, 贾继强, 丁亚林, 等. 斜视航空相机的斜距离焦补偿[J]. 光学 精密工程, 2014, 22(5): 1274-1279.

【20】Xing S. Researchon the combined location theory of multi-source remote sensing imagery[D]. Zhengzhou: Information Engineering University, 2008.
邢帅. 多源遥感影像联合定位技术研究[D]. 郑州: 解放军信息工程大学, 2008.

【21】Sheng Y. Theoretical analysis of the iterative photogrammetric method to determining ground coordinates from photo coordinates and a DEM[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(7): 863-871.

【22】Sheng Y. Comparative evaluation of iterative and non-iterative methods to ground coordinate determination from single aerial images[J]. Computers & Geosciences, 2004, 30(3): 267-279.

【23】Guo H T. Research on monolithic mapping and inspection technology based on satellite remote sensing image[D]. Zhengzhou: Information Engineering University, 2002.
郭海涛. 基于卫星遥感影像的单片测图与修测技术的研究[D]. 郑州: 解放军信息工程大学, 2002.

引用该论文

Mo Delin,Zhang Yongsheng,Wang Tao,Zhang Yan. Imaging Simulation of Airborne Linear Whiskbroom Camera[J]. Acta Optica Sinica, 2018, 38(7): 0728002

莫德林,张永生,王涛,张艳. 航空线阵摆扫式相机成像仿真[J]. 光学学报, 2018, 38(7): 0728002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF