首页 > 论文 > 光学学报 > 38卷 > 7期(pp:710002--1)

基于窗截取的立体元图像阵列快速生成

Fast Elemental Image Array Generation Based on Window Interception

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

集成成像需要从不同角度记录三维(3D)物体的空间信息,采用计算机生成时,计算量大、时间长。针对这一问题,提出窗截取的立体元图像阵列快速生成方法。模拟真实透镜阵列的结构,建立采样模型,根据显示平台光学参数计算得出虚拟3D物体对应每个虚拟透镜元中的图像,即立体元图像,然后采用窗截取的方式生成立体元图像阵列。改变采样点和窗函数可以生成任意孔径任意排列结构的立体元图像阵列。实验搭建基于LED的集成成像显示平台,设计了与LED匹配的方形、六边形、圆形孔径的透镜阵列,选取不同类型的3D模型对比立体元图像阵列的计算时间和立体显示效果,结果表明,在不改变立体图像质量的前提下,当立体元图像的分辨率高于透镜阵列的采样率时,本文方法速度更快。

Abstract

Integral imaging needs to record the spatial information of three-dimensional (3D) objects from different perspectives, therefore the computation is large and cost a long time by computer-generated method. To solve this problem, we present a fast elemental image array generation method by using window interception. The sampling model is established by simulating the structure of the lenslet array, and the elemental images of the virtual 3D object, corresponding to each virtual lens, are calculated based on optics parameters of the display platform. Then, the window interception is used to generate the elemental image array. The elemental image array with any aperture and any arranging structure can be generated by changing the sampling points and the window function. We build an integral imaging display platform based on LED and design the lenslet arrays with the shape of square, hexagonal and circular aperture. Different 3D models are used to compare the processing time and display effect. Experimental results show that without reducing the 3D image quality, the proposed method is faster when the resolution of elemental image is higher than the sampling rate of the lenslet array.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN911.73

DOI:10.3788/aos201838.0710002

所属栏目:图像处理

基金项目:国家自然科学基金重点项目(61631009)、国家十三五重点研发计划项目(2017YFB0404800)、中央高校基本科研业务费专项资金(2017TD-19)

收稿日期:2018-02-05

修改稿日期:2018-03-07

网络出版日期:--

作者单位    点击查看

武伟:吉林大学通信工程学院, 吉林 长春 130012长春工业大学计算机科学与工程学院, 吉林 长春 130012
王世刚:吉林大学通信工程学院, 吉林 长春 130012
赵岩:吉林大学通信工程学院, 吉林 长春 130012
钟诚:长春工业大学公共管理学院(人文学院), 吉林 长春 130012

联系人作者:王世刚(wangshigang@vip.sina.com)

备注:武伟(1982-),女,博士研究生,主要从事立体视频处理方面的研究。E-mail: 114188246@qq.com

【1】Lippmann M. Epreuves reversibles donnant la sensatioin du relief[J]. Journal of Physiology, 1908, 1(7): 821-825.

【2】Ives H E. Optical properties of a Lippmann lenticulated sheet[J]. Journal of the Optical Society of America, 1931, 21(3): 171-176.

【3】Hong J, Kim Y, Choi H J, et al. Three-dimensional display technologies of recent interest: principles, status, and issues[J]. Applied Optics, 2011, 50(34): H87-H115.

【4】Arai J, Okano F, Hoshino H, et al. Gradient-index lens-array method based on real-time integral photography for three-dimensional images[J]. Applied Optics, 1998, 37(11): 2034-2045.

【5】Javidi B, Sola-Pikabea J, Martinez-Corral M. Breakthroughs in photonics 2014: recent advances in 3-D integral imaging sensing and display[J]. IEEE Photonics Journal, 2015, 7(3): 0700907.

【6】Igarashi Y, Murata H, Ueda M. 3-D display system using a computer generated integral photograph[J]. Japanese Journal of Applied Physics, 1978,17(9): 1683-1684.

【7】Park S G, Yeom J, Chen N, et al. Recent issues on integral imaging and its applications[J]. Journal of Information Display, 2014, 15(1): 37-46.

【8】Min S W, Kim J, Lee B. New characteristic equation of three-dimensional integral imaging system and its applications[J]. Japanese Journal of Applied Physics, 2005, 44(1-7): 71-74.

【9】Park K S, Min S W, Cho Y. Viewpoint vector rendering for efficient elemental image generation[J]. IEICE Transactions on Information and Systems. 2007, 90(1): 233-241.

【10】Halle M. Multiple viewpoint rendering[C]. Conference on Computer Graphics and Interactive Techniques, 2010: 243-254.

【11】Xing S, Sang X, Yu X, et al. High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction[J]. Optics Express, 2017, 25(1): 330-338.

【12】Li S L, Wang Q H, Xiong Z L, et al. Multiple orthographic frustum combing for real-time computer-generated integral imaging system[J]. Journal of Display Technology, 2014, 10(8): 704-709.

【13】Kim J, Jung J H, Jang C, et al. Real-time capturing and 3D visualization method based on integral imaging[J]. Optics Express, 2013, 21(16): 18742-18753.

【14】Kwon K C, Park C, Erdenebat M U, et al. High speed image space parallel processing for computer-generated integral imaging system[J]. Optics Express, 2012, 20(2): 732-740.

【15】Kang H H, Shin D H, Kim E S. Efficient compression of motion-compensated sub-images with Karhunen-Loeve transform in three-dimensional integral imaging[J]. Optics Communications, 2010, 283(6): 920-928.

【16】Wu W, Wang S G, Wang H Z, et al. Elemental image genetation based on Maya[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1314-1320.
武伟, 王世刚, 王宏志, 等. 基于Maya的立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2017, 47(4): 1314-1320.

【17】Yanaka K. Integral photography using hexagonal fly′s eye lens and fractioin view[J]. SPIE, 2008, 6803: 68031K.

【18】Liu D S. Micro optics and microlens arrays[M]. Beijing: Science Press, 2013.
刘德森. 微小光学与微透镜阵列[M]. 北京: 科学出版社, 2013.

【19】Chen N, Yeom J, Jung J H, et al. Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays[J]. Optics Express, 2011, 19(27): 26917-26927.

引用该论文

Wu Wei,Wang Shigang,Zhao Yan,Zhong Cheng. Fast Elemental Image Array Generation Based on Window Interception[J]. Acta Optica Sinica, 2018, 38(7): 0710002

武伟,王世刚,赵岩,钟诚. 基于窗截取的立体元图像阵列快速生成[J]. 光学学报, 2018, 38(7): 0710002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF