首页 > 论文 > 光学学报 > 38卷 > 7期(pp:714002--1)

环境温度变化不敏感的光学腔热屏蔽层设计

Design of Thermal Shield of Optical Cavities for Low Sensitivity to Environmental Temperature Fluctuations

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过将光学腔与外围热屏蔽层之间的热传递模型等效为多级电阻电容(RC)积分电路,计算得到光学腔的温度对外界环境温度变化的响应特性。用此方法探讨了当热屏蔽层的质量被限定时,热屏蔽层与光学腔的距离、热屏蔽层的层数和厚度对光学腔的温度响应特性的影响。分析结果表明,热屏蔽层与光学腔的距离从40 mm减小至5 mm,可使光学腔的温度响应时间增加1倍;当热屏蔽层的层数从1层增加至3层,且增加光学腔的最内层热屏蔽层的厚度,可使光学腔的温度对快速的环境温度变化的敏感度减小1个数量级以上。通过优化后的光学腔的热屏蔽层设计,有望提高锁定于光学腔的稳频激光的频率稳定度。

Abstract

Heat transfer from outer thermal shield to an optical cavity is simplified to a multilevel resistor-capacitor (RC) integrating circuit, which is used to calculate the temperature response of the optical cavity to environmental temperature fluctuations. The temperature response of the optical cavity to the distance between the thermal shield and the optical cavity, the number and the thicknesses of the layers of the thermal shield is discussed based on this method when the mass of thermal shield is fixed. The analysis shows that the temperature response time of the optical cavity can be increased by 2 times as the distance between the thermal shield and the optical cavity is reduced from 40 mm to 5 mm. The temperature sensitivity of the optical cavity to the environmental temperature fluctuations can be reduced by at least one order of magnitude when the number of the layers of the thermal shield is increased from 1 to 3 and the thickness of the inner layer of the thermal shield is maximized. The frequency stability of the frequency-stabilized lasers based on the optical cavity can be improved by the optimized design of the thermal shield of an optical cavity.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433

DOI:10.3788/aos201838.0714002

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(11654004,11334002,91636214)、科技部重点研发计划课题(2017YFA0304403)

收稿日期:2018-02-07

修改稿日期:2018-03-08

网络出版日期:--

作者单位    点击查看

李雪艳:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
蒋燕义:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
姚远:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
毕志毅:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
马龙生:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062

联系人作者:蒋燕义(yyjiang@phy.ecnu.edu.cn)

备注:李雪艳(1990-),女,硕士研究生,主要从事激光稳频方面的研究。E-mail: 1450823800@qq.com

【1】Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-701.

【2】Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102.

【3】Schiller S, Tino G M, Gill P, et al. Einstein Gravity Explorer-a medium-class fundamental physics mission[J]. Experimental Astronomy, 2009, 23(2): 573-610.

【4】Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.

【5】Young B C, Cruz F C, Itano W M, et al. Visible lasers with subhertz linewidths[J]. Physical Review Letters, 1999, 82(19): 3799-3802.

【6】Chen J B. Active optical clock[J]. Chinese Science Bulletin, 2009, 54(3): 348-352.

【7】Norcia M A, Winchester M N, Cline J R K, et al. Superradiance on the millihertz linewidth strontium clock transition[J]. Science Advances, 2016, 2(10): e1601231.

【8】Thorpe M J, Rippe L, Fortier T M, et al. Frequency stabilization to 6×10-16 via spectral-hole burning[J]. Nature Photonics, 2011, 5(11): 688-693.

【9】Cook S, Rosenband T, Leibrandt D R. Laser-frequency stabilization based on steady-state spectral-hole burning in Eu3+∶Y2SiO5[J]. Physical Review Letters, 2015, 114(25): 253902.

【10】Hfner S, Falke S, Grebing C, et al. 8×10-17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 2015, 40(9): 2112-2115.

【11】Nicholson T L, Martin M J, Williams J R,et al. Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s[J]. Physical Review Letters, 2012, 109(23): 230801.

【12】Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10-16 -level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161.

【13】Chen H Q, Jiang Y Y, Fang S, et al. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz[J]. Journal of the Optical Society of America B, 2013, 30(6): 1546-1550.

【14】Millo J, Magalhaes D V, Mandache C, et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 2009, 79(5): 053829.

【15】Webster S A, Oxborrow M, Pugla S, et al. Thermal-noise-limited optical cavity[J]. Physical Review A, 2008, 77(3): 033847.

【16】Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 2004, 93(25): 250602.

【17】Matei D G, Legero T, Hfner S, et al. 1.5 μm lasers with sub 10 mHz linewidth[J]. Physical Review Letters, 2017, 118(26): 263202.

【18】Zhang W, Robinson J M, Sonderhouse L, et al. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K[J]. Physical Review Letters, 2017, 119(24): 243601.

【19】Mueller G, McNamara P, Thorpe I, et al. Laser frequency stabilization for LISA: NASA/TM-2005-212794[R]. 2005.

【20】Wang X C, Li S K, Li G, et al. Optical Fabry-Pérot cavity system with high thermal stability and high finesse[J]. Acta Optica Sinica, 2017, 37(1): 0112004.
王兴昌, 李少康, 李刚, 等. 高热稳定性高精细度光学法布里-珀罗腔系统[J]. 光学学报, 2017, 37(1): 0112004.

【21】Sun X T, Liu J Q, Zhou J, et al. Confocal Fabry-Pérot interferometer for frequency stabilization of laser[J]. Chinses Jounal of Lasers, 2008, 35(7): 1005-1008.
孙旭涛, 刘继桥, 周军, 等. 激光稳频的共焦法布里-珀罗干涉仪[J]. 中国激光, 2008, 35(7): 1005-1008.

【22】Dai X J, Jiang Y Y, Hang C, et al. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations[J]. Optics Express, 2015, 23(4): 5134-5146.

【23】Sanjuan J, Gürlebeck N, Braxmaier C. Mathematical model of thermal shields for long-term stability optical resonators[J]. Optics Express, 2015, 23(14): 17892-17908.

【24】Hagemann C, Grebing C, Lisdat C, et al. Ultrastable laser with average fractional frequency drift rate below 5×10-19/s[J]. Optics Letters, 2014, 39(17): 5102-5105.

【25】Table of total emissivity[EB/OL]. [2018-01-15]. https://www.omega.com/temperature/z/pdf/z088-089.pdf.

引用该论文

Li Xueyan,Jiang Yanyi,Yao Yuan,Bi Zhiyi,Ma Longsheng. Design of Thermal Shield of Optical Cavities for Low Sensitivity to Environmental Temperature Fluctuations[J]. Acta Optica Sinica, 2018, 38(7): 0714002

李雪艳,蒋燕义,姚远,毕志毅,马龙生. 环境温度变化不敏感的光学腔热屏蔽层设计[J]. 光学学报, 2018, 38(7): 0714002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF