首页 > 论文 > 中国激光 > 45卷 > 7期(pp:701003--1)

基于准分子激光绝对波长校准的寻峰算法研究

Research of Peak-Detection Algorithm Based on Absolute Wavelength Calibration of Excimer Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

准分子激光绝对波长校准技术中, 参考中心波长位置抖动是影响校准精度的主要因素, 寻峰算法是解决这类问题的有效途径。通过仿真和实验研究比较了5种寻峰算法, 结果显示, 高斯非线性曲线拟合寻峰法误差最小, 算法平均误差为0.15 pm。通过研究强度阈值对5种寻峰算法的影响, 明确了阈值优化对减小寻峰算法误差的重要性。选取各算法最佳强度阈值来优化算法, 结果表明, 高斯非线性曲线拟合寻峰算法的误差最低为0.04 pm, 平均算法误差为0.06 pm, 选取该寻峰算法作为绝对波长校准核心算法, 能满足校准精度要求。通过对影响算法的误差原因进行分析, 证明噪声大小是影响高斯非线性曲线拟合寻峰算法误差的主要因素, 进一步提升校准精度须从抑制噪声角度出发。

Abstract

Position shaking of reference center wavelength is the main factor which affects the accuracy of absolute wavelength calibration. In this case, peak-detection algorithms are proposed to find the real-time position of center wavelength. Five peak-detection algorithms are analyzed and compared by simulations and experiments. The error of Gaussian nonlinear curve fitting algorithm is 0.15 pm, which is the lowest in all the test algorithms. The influence of power threshold value upon the five peak-detection algorithms is studied, and the importance of threshold optimization is clear and definite for reducing peak-detection errors. After threshold value optimization, the Gaussian nonlinear curve fitting algorithm performs the best, as its lowest error is 0.04 pm and the average error is 0.06 pm. Thus, Gaussian nonlinear curve fitting algorithm meets the requirement of calibration accuracy. By analyzing factors which cause error in the peak-detection algorithms, we find that the signal noise ratio turns out to be the major factor which dominates the errors of Gaussian nonlinear curve fitting algorithm. Therefore, noise suppression is the best way to achieve high overall accuracy of absolute wavelength calibration.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN247

DOI:10.3788/CJL201845.0701003

所属栏目:激光器件与激光物理

基金项目:国家重大科技专项(2009ZX02206-01)

收稿日期:2017-12-26

修改稿日期:2018-02-11

网络出版日期:--

作者单位    点击查看

袁靖超:中国科学院光电研究院投影光学室, 北京 100094北京市准分子激光工程技术研究中心, 北京 100094中国科学院大学, 北京 100049
赵江山:中国科学院光电研究院投影光学室, 北京 100094北京市准分子激光工程技术研究中心, 北京 100094
李慧:中国科学院光电研究院投影光学室, 北京 100094北京市准分子激光工程技术研究中心, 北京 100094
刘广义:中国科学院光电研究院投影光学室, 北京 100094北京市准分子激光工程技术研究中心, 北京 100094

联系人作者:袁靖超(yuanjingchao15@mails.ucas.ac.cn)

备注:袁靖超(1992-), 男, 硕士研究生, 主要从事准分子激光器波长测量及校准方面的研究。E-mail: yuanjingchao15@mails.ucas.ac.cn

【1】Basting D, Marowsky G. Excimer laser technology[M]. Berlin: Springer, 2005: 89-98.

【2】Das P P, Sandstrom R L, Fomenkov I. Wavelength reference for excimer laser: US5,978,391[P]. 1999-11-02.

【3】Newman P C, Sandstrom R L. Wavelength system for an excimer laser: US5,978,394[P]. 1999-11-02.

【4】Nave G, Sansonetti C J. Reference wavelengths in the spectra of Fe, Ge, and Pt in the region near 1935 [J]. Journal of the Optical Society of America B, 2004, 21(2): 442-453.

【5】Fomenkov I. Method and apparatus for calibrating a laser wavelength control mechanism: US5,450,207[P]. 1995-09-12.

【6】Zhu M, Zhang M, Hu L Z, et al. Peak-search algorithm for center wavelength detection in fiber Bragg grating[J]. Study on Optical Communications, 2011, 37(5): 60-63.
朱梅, 张淼, 胡立章, 等. 光纤布拉格光栅中心波长检测中的寻峰算法[J]. 光通信研究, 2011, 37(5): 60-63.

【7】Othonos A, Kalli K. Fiber Bragg gratings: fundamentals and application in telecommunications and sensing[M]. Boston: Artech House Publishers, 1999.

【8】Jing W C, Wang G H, Liu K, et al. Application of weight wavelength algorithm on the demodulation of a fiber Bragg grating optical sensing system[J]. Journal of Optoelectronics·Laser, 2007, 18(9): 1022-1025.
井文才, 王光辉, 刘琨, 等. 功率加权法用于光纤Bragg光栅特征波长检测[J]. 光电子·激光, 2007, 18(9): 1022-1025.

【9】Steven C C. Applied numerical methods with MATLAB for engineer and scientists[M]. New York: McGraw-Hill, 2009: 333-348.

【10】Chen Z J, Bai J, Wu Z T, et al. Optimization and comparison of the peak-detection algorithms for the reflection spectrum of fiber Bragg grating[J]. Acta Photonica Sinica, 2015, 44(11): 1112001.
陈志军, 白剑, 吴祖堂, 等. 光纤布喇格光栅反射谱寻峰算法优化及比较[J]. 光子学报, 2015, 44(11): 1112001.

【11】Wu B, Liu Y Z, Zhang Q S, et al. High efficient narrow linewidth fiber laser based on fiber grating Fabry-Perot cavity[J]. Chinese Journal of Lasers, 2007, 34(3): 350-353.
武波, 刘永智, 张谦述, 等. 基于光纤光栅法布里-珀罗腔的高效窄线宽光纤激光器[J]. 中国激光, 2007, 34(3): 350-353.

【12】Lee H W, Park H J, Lee J H, et al. Accuracy improvement in peak positioning of spectrally distorted fiber Bragg grating sensors by Gaussian curve fitting[J]. Applied Optics, 2007, 46(12): 2205-2208.

【13】Wang F M, He Z H, Suo J. Application of numerical calculation method[M]. Beijing: Science Press, 1992.
王福明, 贺正辉, 索瑾. 应用数值计算方法[M]. 北京: 科学出版社, 1992.

【14】Zhu H H, Qin H K, Zhang M, et al. Peak-detection algorithm in the demodulation for the fiber Bragg grating sensor system[J]. Chinese Journal of Lasers, 2008, 35(6): 893-897.
朱浩瀚, 秦海琨, 张敏, 等. 光纤布拉格光栅传感解调中的寻峰算法[J]. 中国激光, 2008, 35(6): 893-897.

【15】Su J, Dong X P, Shi Z D. Design of the sensitivity enhanced strain sensor based on fine transmission spectrum of FBG[J]. Chinese Journal of Lasers, 2014, 41(8): 0805002.
苏娟, 董小鹏, 石志东. 基于FBG精细谱的应变增敏型传感器的设计[J]. 中国激光, 2014, 41(8): 0805002.

【16】Wang Q N, Yang Y H. A FBG spectrum peak detection technique based on Steger image algorithm[J]. Acta Optica Sinica, 2014, 34(8):0810004.
王巧妮, 杨远洪. 基于Steger图像算法的光纤布拉格光栅寻峰技术[J]. 光学学报, 2014, 34(8): 0810004.

【17】Lokai P, Schroeder T, Kleinschmidt J, et al. Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp: US7,006,541[P].2006-02-28

引用该论文

Yuan Jingchao,Zhao Jiangshan,Li Hui,Liu Guangyi. Research of Peak-Detection Algorithm Based on Absolute Wavelength Calibration of Excimer Laser[J]. Chinese Journal of Lasers, 2018, 45(7): 0701003

袁靖超,赵江山,李慧,刘广义. 基于准分子激光绝对波长校准的寻峰算法研究[J]. 中国激光, 2018, 45(7): 0701003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF