首页 > 论文 > 中国激光 > 45卷 > 7期(pp:707001--1)


Tissue Intrinsic Fluorescence Spectrum Recovery Algorithm and Its Application in Diabetes Screening

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


通过设计不同光学参数的组织仿体, 研究吸收、散射对组织荧光光谱及组织漫反射光谱的影响规律, 优化经验复原算法, 以校正吸收、散射的影响, 获得组织的固有荧光光谱。结果显示: 使用优化的经验复原算法(经验参数kx和km分别为0.9和-0.8)能够有效降低吸收、散射对荧光强度的影响, 且荧光强度与荧光成分的浓度线性相关。在基于皮肤组织荧光光谱法筛查糖尿病的应用研究中应用上述光谱复原算法, 结果显示:与原始荧光光谱相比, 采用复原后的固有荧光光谱进行糖尿病筛查时, 受试者工作特征(ROC)曲线覆盖面积由0.54增加至0.81, 在特异性同为70.6%时, 敏感性由38.6%增至77.6%。采用组织仿体优化生物组织固有荧光光谱经验复原算法能有效提高荧光光谱的临床应用价值。


Tissue phantoms with different optical parameters are designed to study the influence of absorption and scattering on tissue fluorescence and diffuse reflection spectra. An empirical recovery algorithm is optimized to correct the influence of absorption and scattering and obtain the intrinsic fluorescence spectrum of tissues. The results reveal that the empirical recovery algorithm (experience parameters kx and km are 0.9 and -0.8, respectively) can effectively reduce the influence of absorption and scattering on the fluorescence intensity, and the fluorescence intensity is linearly correlated with the concentration of fluorescence components. When we apply spectral recovery algorithm to the screening of diabetes based on skin tissue fluorescence spectrum, the results reveal that, comparing to the fluorescence spectrum before recovery, the area under receiver operating characteristic (ROC) curve increases from 0.54 to 0.81; besides, the sensitivity also increases from 38.6% to 77.6% when the specificity is 70.6%. Therefore, this study makes a major contribution to research on clinical application by optimizing fluorescence spectrum empirical recovery algorithm with tissue phantoms.

广告组1 - 空间光调制器+DMD








作者单位    点击查看

张洋:中国科学院合肥物质科学研究院应用技术研究所, 安徽省生物医学光学仪器工程技术研究中心, 安徽 合肥 230031皖江新兴产业技术发展中心, 安徽 铜陵 244000
倪敬书:中国科学院合肥物质科学研究院应用技术研究所, 安徽省生物医学光学仪器工程技术研究中心, 安徽 合肥 230031
张元志:中国科学院合肥物质科学研究院应用技术研究所, 安徽省生物医学光学仪器工程技术研究中心, 安徽 合肥 230031
方朝晖:安徽中医药大学第一附属医院, 安徽 合肥 230031
王贻坤:中国科学院合肥物质科学研究院应用技术研究所, 安徽省生物医学光学仪器工程技术研究中心, 安徽 合肥 230031皖江新兴产业技术发展中心, 安徽 铜陵 244000
刘勇:中国科学院合肥物质科学研究院应用技术研究所, 安徽省生物医学光学仪器工程技术研究中心, 安徽 合肥 230031


备注:张洋(1989-), 男, 硕士研究生, 主要从事生物医学光学中组织荧光光谱复原及分类算法等方面的研究。E-mail: yangz@aiofm.ac.cn

【1】Pestova K, Koch A J, Quesenberry C P, et al. Identification of fluorescence in situ hybridization assay markers for prediction of disease progression in prostate cancer patients on active surveillance[J/OL]. BMC Cancer, 2018, 18. https:∥bmccancer.biomedcentral.com/articles/10.1186/s12885-017-3910-4.

【2】Andrade S A, Pratavieira S, Ribeiro M M, et al. Oral cancer from the perspective of wide-field optical fluorescence: diagnosis, tumor evolution and post-treatment follow up[J]. Photodiagnosis and Photodynamic Therapy, 2017, 19: 239-242.

【3】Spliethoff J W, Evers D J, Klomp H M, et al. Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy[J]. Lung Cancer, 2013, 80(2): 165-171.

【4】Shalaby N, Al-Ebraheem A, Le D, et al. Time-resolved fluorescence (TRF) and diffuse reflectance spectroscopy (DRS) for margin analysis in breast cancer[J]. Lasers in Surgery and Medicine, 2018, 50(3): 236-245.

【5】Lim L, Nichols B, Migden M R, et al. Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis[J]. Journal of Biomedical Optics, 2014, 19(11): 117003.

【6】Meena B L, Singh P, Sah A N, et al. Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device[J]. Journal of Biomedical Optics, 2018, 23(1): 1-7.

【7】Zhang Y Z, Liu Y, Hou H Y, et al. Intrinsic tissue fluorescence spectrum recovery based on particle swarm optimization algorithm[J]. Chinese Journal of Lasers, 2016, 43(5): 0504001.
张元志, 刘勇, 侯华毅, 等. 基于粒子群优化算法的生物组织固有荧光光谱复原方法[J]. 中国激光, 2016, 43(5): 0504001.

【8】Liu Y, Zhang Y Z, Hou H Y, et al. Tissue intrinsic fluorescence spectrum recovering based on diffusion theory[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3836-3841.
刘勇, 张元志, 侯华毅, 等. 基于扩散理论的生物组织固有荧光光谱复原方法研究[J]. 光谱学与光谱分析, 2016, 36(12): 3836-3841.

【9】Luo Z, Deng Y, Wang K, et al. Decoupled fluorescence Monte Carlo model for direct computation of fluorescence in turbid media[J]. Journal of Biomedical Optics, 2015, 20(2): 025002.

【10】Chen X, Xie H, Xu Z, et al. Correction of tissue autofluorescence by reflectance spectrum[C]. Proceedings of SPIE, 2002, 4916: 441-444.

【11】Stamatas G N, Wu J, Kollias N, Non-invasive method for quantitative evaluation of exogenous compound deposition on skin[J]. Journal of Investigative Dermatology, 2002, 118(2): 295-302.

【12】Hull E, Ediger M, Unione A, et al. Noninvasive, optical detection of diabetes: model studies with porcine skin[J]. Optics Express, 2004, 12(19): 4496-4510.

【13】Da Moura Semedo C, Webb M, Waller H, et al. Skin autofluorescence, a non-invasive marker of advanced glycation end products: clinical relevance and limitations[J]. Postgraduate Medical Journal, 2017, 93(1099): 289-294.

【14】Yamanaka M, Matsumura T, Ohno R, et al. Non-invasive measurement of skin autofluorescence to evaluate diabetic complications[J]. Journal of Clinical Biochemistry and Nutrition, 2016, 58(2): 135-140.

【15】Sorensen C J, Hastings M K, Lang C E, et al. Relationship of shoulder activity and skin intrinsic fluorescence with low level shoulder pain and disability in people with type 2 diabetes[J]. Journal of Diabetes and its Complications, 2017, 31(6): 983-987.

【16】Mohan V, Rani C S, Regin B S, et al. Noninvasive type 2 diabetes screening: clinical evaluation of SCOUT DS in an Asian Indian cohort[J]. Diabetes Technology & Therapeutics, 2013, 15(1): 39-45.

【17】Nivetha K B, Sujatha N. Development of thin skin mimicking bilayer solid tissue phantoms for optical spectroscopic studies[J]. Biomedical Optics Express, 2017, 8(7): 3198-3212.

【18】Anastasopoulou M, Koch M, Gorpas D, et al. Comprehensive phantom for interventional fluorescence molecular imaging[J]. Journal of Biomedical Optics, 2016, 21(9): 091309.

【19】Jacques S L. Optical properties of biological tissues: a review[J]. Physics in Medicine & Biology, 2013, 58(11): R37-61.

【20】Zhang Y, Zhu L, Wang Y, et al. Classification of skin autofluorescence spectrum using support vector machine in type 2 diabetes screening[J]. Journal of Innovation in Optical Health Science, 2013, 6(4): 1350036.

【21】Wang Y K, Zhu L, Zhang L, et al. A portable system for noninvasive assessment of advanced glycation end-products using skin fluorescence and reflectance spectrum [J]. Journal of Applied Spectroscopy, 2012, 79(3): 431-436.

【22】Xu K. Analysis of the clinical value on fasting plasma glucose, 2 h postprandial plasma glucose and glycosylated hemoglobin in the diagnostic of diabetes mellitus[J]. China Modern Medicine, 2014, 21(13): 75-77.
徐珂. 空腹血糖、餐后2 h血糖、糖化血红蛋白检测在糖尿病诊断中的临床价值分析[J]. 中国当代医药, 2014, 21(13): 75-77.

【23】Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. The Journal of the American Medical Association, 2017, 317(24): 2515-2523.


Zhang Yang,Ni Jingshu,Zhang Yuanzhi,Fang Zhaohui,Wang Yikun,Liu Yong. Tissue Intrinsic Fluorescence Spectrum Recovery Algorithm and Its Application in Diabetes Screening[J]. Chinese Journal of Lasers, 2018, 45(7): 0707001

张洋,倪敬书,张元志,方朝晖,王贻坤,刘勇. 组织固有荧光光谱复原算法及其在糖尿病筛查中的应用研究[J]. 中国激光, 2018, 45(7): 0707001


【1】王晓飞,张欣怡,徐馨荷. 考虑多种因素的近红外光谱血糖预测模型对比. 激光与光电子学进展, 2019, 56(4): 41701--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF