首页 > 论文 > 激光与光电子学进展 > 55卷 > 7期(pp:72601--1)

金纳米粒子与CdSe量子点间的距离对体系荧光的影响

Influence of Distance Between CdSe Quantum Dot and Gold Nanoparticle on System Fluorescence

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用羧基修饰的CdSe量子点与氨基包覆的金纳米粒子之间的静电相互作用构建了金纳米粒子/CdSe量子点荧光共振能量转移(FRET)体系,研究了CdSe量子点与Au纳米粒子间距变化下该体系的荧光变化。结果表明,相互作用荧光强度和FRET效率均随间距的增大而减小,此变化规律与Frster能量共振转移理论给出的一致。

Abstract

The fluorescence resonance energy transfer (FRET) system of gold nanoparticles and CdSe quantum dots is established via the electrostatic interaction between CdSe quantum dots modified with carboxyl and gold nanoparticles encapsulated with amino. The fluorescence variance in this system with the distance between CdSe quantum dot and gold nanoparticle is investigated. The results show that, the interaction fluorescence intensity and FRET efficiency both decrease with the increase of the distance, which is consistent with that predicted by the Frster resonance energy transfer theory.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O432

DOI:10.3788/lop55.072601

所属栏目:物理光学

基金项目:国家自然科学基金(11204046)、国家国际科技合作专项项目(2014DFA00670)、中央引导地方科技发展专项(QKZYD[2017]4004)、贵州省科技支撑项目(QKHZ[2017]2887)

收稿日期:2017-12-07

修改稿日期:2018-01-04

网络出版日期:--

作者单位    点击查看

张莹:贵州大学物理学院, 贵州 贵阳 550025
白忠臣:贵州大学贵州省光电子技术及应用重点实验室, 贵州 贵阳 550025
黄兆岭:贵州大学贵州省光电子技术及应用重点实验室, 贵州 贵阳 550025
赵麒:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
彭嫚:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
秦水介:贵州大学贵州省光电子技术及应用重点实验室, 贵州 贵阳 550025

联系人作者:秦水介(shuijie_qin@sina.com)

备注:张莹(1991—),女,硕士研究生,主要从事纳米量子点及其应用方面的研究。E-mail: m15519560071@163.com

【1】Lee Y S, Gopi C V V M, Reddy A E, et al. High performance of TiO2/CdS quantum dot sensitized solar cells with a Cu-ZnS passivation layer[J]. New Journal of Chemistry, 2017, 41(5): 1914-1917.

【2】Husseini H B A, Naimee K A A, Alkhursan A H, et al. External modes in quantum dot light emitting diode with filtered optical feedback[J]. Journal of Applied Physics, 2016, 119(22): 100-107.

【3】Zhang J, Zhang J, Geng J J, et al. Application of PbS quantum dots in luminescent solar concentrator[J]. Acta Optica Sinica, 2012, 32(1): 0123003.
张俊, 张军, 耿俊杰, 等. PbS量子点在荧光集光太阳能光伏器件上的应用[J]. 光学学报, 2012, 32(1): 0123003.

【4】Cheng C, Hu N S. Broadband PbSe quantum-dot-doped fiber amplifiers from 1250 nm to 1370 nm[J]. Acta Optica Sinica, 2016, 36(4): 0406002.
程成, 胡能树. 1250~1370 nm波带PbSe量子点宽带光纤放大器[J]. 光学学报, 2016, 36(4): 0406002.

【5】Chen Y F, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes[J]. Analytical Chemistry, 2002, 74(19): 5132-5138.

【6】Jamieson T, Bakhshi R, Petrova D, et al. Biological applications of quantum dots[J]. Biomaterials, 2007, 28(31): 4717-4732.

【7】Xia Y S, Song L, Zhu C Q. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dot) assembly[J]. Analytical Chemistry, 2011, 83(4): 1401-1407.

【8】Geng Y, Wang H L. Reflective fluorescence temperatures sensor based on dual-granularity CdSe/ZnS doped quantum dots thin films[J]. Chinese Journal of Lasers, 2016, 43(5): 0514003.
耿琰, 王河林. 双粒度CdSe/ZnS掺杂量子点薄膜的反射式荧光温度传感器[J]. 中国激光, 2016, 43(5): 0514003.

【9】Zhang H, Xu T, Li C W, et al. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels[J]. Biosensors & Bioelectronics, 2010, 25(11): 2402-2407.

【10】Shankar S S, Rai A, Ankamwar B, et al. Biological synthesis of triangular gold nanoprisms[J]. Nature Materials, 2004, 3(7): 482-488.

【11】Fujita T, Guan P, Mckenna K, et al. Atomic origins of the high catalytic activity of nanoporous gold[J]. Nature Materials, 2012, 11(9): 775-780.

【12】Chandra D, Jena B K, Raj C R, et al. Functionalized mesoporous cross-linked polymer as efficient host for loading gold nanoparticles and its electrocatalytic behavior for reduction of H2O2[J]. Chemistry of Materials, 2015,19(25): 6290-6296.

【13】Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997, 277(5329): 1078-1081.

【14】Yamazoe S, Naya M, Shiota M, et al. Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite[J]. ACS Nano, 2015, 8(6): 5622-5632.

【15】Saha K, Agasti S S, Kim C, et al. Gold nanoparticle in chemical and biological sensing[J]. Chemical Reviews, 2012, 112(5): 2739-2779.

【16】Frster T. Intermolecular energy migration and fluorescence[J]. Annals of Physics, 1948, 2: 55-75.

【17】Huang C C, Yang Z, Lee K H, et al. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II)[J]. Angewandte Chemie International Edition, 2007, 46(36): 6824-6828.

【18】Stryer L, Haugland R P. Energy transfer: A spectroscopic ruler[J]. Proceedings of the National Academy of Sciences of the United States of America, 1967, 58(2): 719-726.

【19】Tan H, Ni Z Y, Pi X D, et al. Research progress in application of silicon quantum dots in optoelectronic devices[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030006.
谭华, 倪朕伊, 皮孝东, 等. 硅量子点在光电器件中的应用研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030006.

【20】Shan G C, Huang W. Theoretical study of single-pair fluorescence resonant energy transfer spectroscopy in microcavity[J]. Acta Optica Sinica, 2009, 29(4): 1049-1053.
单光存, 黄维. 微腔中单分子对荧光共振能量转移光谱学的理论研究[J]. 光学学报, 2009, 29(4): 1049-1053.

【21】Sapsford K E, Granek J, Deschamps J R, et al. Monitoring botulinum neurotoxin an activity with peptide-functionalized quantum dot resonance energy transfer sensors[J]. ACS Nano, 2011, 5(4): 2687-2699.

【22】Goryacheva O A, Beloglazova N V, Vostrikova A M, et al. Lanthanide-to-quantum dot Frster resonance energy transfer (FRET): Application for immunoassay[J]. Talanta, 2017, 164: 377-385.

【23】Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nature Materials, 2003, 2(9): 630-638.

【24】Lunz M, Bradley A L, Chen W Y, et al. Two-dimensional Frster resonant energy transfer in a mixed quantum dot monolayer: Experiment and theory[J]. Journal of Physical Chemistry C, 2015, 113(8): 3084-3088.

【25】Liang G X, Pan H C, Li Y, et al. Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods[J]. Biosensors & Bioelectronics, 2009, 24(12): 3693-3697.

【26】Xia L, Kong X G, Liu X M, et al. An upconversion nanoparticle-Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy[J]. Biomaterials, 2014, 35(13): 4146-4156.

引用该论文

Zhang Ying,Bai Zhongchen,Huang Zhaoling,Zhao Qi,Peng Man,Qin Shuijie. Influence of Distance Between CdSe Quantum Dot and Gold Nanoparticle on System Fluorescence[J]. Laser & Optoelectronics Progress, 2018, 55(7): 072601

张莹,白忠臣,黄兆岭,赵麒,彭嫚,秦水介. 金纳米粒子与CdSe量子点间的距离对体系荧光的影响[J]. 激光与光电子学进展, 2018, 55(7): 072601

被引情况

【1】彭嫚,白忠臣,张莹,黎显继,张正平. 基于量子点荧光猝灭法的蛋白质检测芯片. 激光与光电子学进展, 2019, 56(6): 62601--1

【2】黄小梅,邓祥. 荧光碳量子点制备及其作为荧光探针对NO-3的检测. 激光与光电子学进展, 2019, 56(7): 71602--1

【3】刘鹏程,昌梦雨,白忠臣,秦水介. TiN纳米粒子增强CdSe/Al2O3异质结荧光的研究. 中国激光, 2020, 47(9): 913001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF