首页 > 论文 > 液晶与显示 > 33卷 > 6期(pp:520-527)

一种用于图像拼接的改进ORB算法

Improved ORB algorithm used in image stitching

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对 Oriented FAST and Rotated BRIEF (ORB)算法缺少尺度不变特性,误匹配率高,易造成图像拼接质量差等问题,本文提出一种用于图像拼接的改进ORB算法。首先使用一种基于尺度不变的特征检测算法对图像进行特征点检测,然后用ORB描述算法对特征点进行特征描述,用ORB匹配算法进行粗匹配,再用双向匹配和Random Sampling Coherence(RANSAC)算法对匹配点进行精匹配和提纯,进一步提高其正确率,最后使用渐入渐出加权融合完成图像拼接。实验结果表明,本文方法在图像的缩放和旋转、模糊、光照强度、拍摄视角等情况下都具有优秀的鲁棒性和稳定性,是一种实时性强、准确度高、拼接质量优秀的图像拼接方法。

Abstract

In order to solve the problems that the Oriented FAST and Rotated BRIEF (ORB) algorithm does not have the feature of scale invariance, the highly false positive rate and the bad quality of the spliced image, this paper provides an improved ORB algorithm for image stitching. Firstly, a feature-based detection algorithm based on the same scale is used to detect the feature points of the image. Then the features of the detected feature points are described by using the ORB descriptor, and then the ORB matching algorithm is used for the rough matching. The bidirectional matching method and Random Sampling Coherence (RANSAC) algorithm are used to match and refine matching points to further improve its accuracy. Finally, the image mosaic is completed by fade-in-weight fusion. The experimental results show that the proposed algorithm is robust and stable against different illumination conditions, such as different rotation angles, low resolution and varying scale. It is a short time-consuming, high-precision and good image mosaic method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751.1

DOI:10.3788/yjyxs20183306.0520

所属栏目:图像处理

基金项目:中央高校基本科研业务费专项资金资助项目(No.2572017PZ10)

收稿日期:2017-12-08

修改稿日期:2018-03-23

网络出版日期:--

作者单位    点击查看

王 健:东北林业大学 信息与计算机工程学院,黑龙江 哈尔滨 150040
于 鸣:东北林业大学 信息与计算机工程学院,黑龙江 哈尔滨 150040
任洪娥:东北林业大学 信息与计算机工程学院,黑龙江 哈尔滨 150040

联系人作者:王健(1069944640@qq.com)

备注:王健(1991-),男,辽宁鞍山人,硕士研究生,主要研究方向:图像识别与智能控制。

【1】GHOSH D, KAABOUCH N. A survey on image mosaicing techniques [J]. Journal of Visual Communication and Image Representation, 2016, 34: 1-11.

【2】赵岩,陈月,王世刚.结合投影误差校正的快速SIFT图像拼接[J].光学 精密工程,2017,25(6):1645-1651.
ZHAO Y, CHEN Y, WANG S G. Corrected fast SIFT image stitching method by combining projection error [J]. Optics and Precision Engineering, 2017, 25(6): 1645-1651. (in Chinese)

【3】XIE X, XU Y, LIU Q, et al. A study on fast SIFT image mosaic algorithm based on compressed sensing and wavelet transform [J]. Journal of Ambient Intelligence and Humanized Computing, 2015, 6(6): 835-843.

【4】AGHAJANI K, YOUSEFPOUR R, SHIRPOUR M, et al. Intensity based image registration by minimizing the complexity of weighted subtraction under illumination changes [J]. Biomedical Signal Processing and Control, 2016, 25: 35-45.

【5】李玉峰,李广泽,谷绍湖,等.基于区域分块与尺度不变特征变换的图像拼接算法[J].光学 精密工程,2016,24(5):1197-1205.
LI Y F, LI G Z, GU S H, et al. Image mosaic algorithm based on area blocking and SIFT [J]. Optics and Precision Engineering, 2016, 24(5): 1197-1205. (in Chinese)

【6】王灿进,孙涛,陈娟.局部不变特征匹配的并行加速技术研究[J].液晶与显示,2014,29(2):266-274.
WANG C J, SUN T, CHEN J. Speeding up local invariant feature matching using parallel technology [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(2): 266-274. (in Chinese)

【7】WANG W X, CAO T, LIU S, et al. Remote sensing image automatic registration on multi-scale Harris-Laplacian [J]. Journal of the Indian Society of Remote Sensing, 2015, 43(3): 501-511.

【8】LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

【9】BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features(SURF) [J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.

【10】RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF [C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE. 2011: 2564-2571.

【11】ZHU J, REN M W. Image mosaic method based on SIFT features of line segment [J]. Computational and Mathematical Methods in Medicine, 2014, 2014: 926312.

【12】ZHAO H Y, ZHAO H C, LV J F, et al. Multimodal image matching based on Multimodality Robust Line Segment Descriptor [J]. Neurocomputing, 2016, 177: 290-303.

【13】RAGURAM R, CHUM O, POLLEFEYS M, et al. USAC: a universal framework for random sample consensus [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 2022-2038.

【14】陈思聪,刘晶红,何林阳,等.一种用于图像拼接的改进BRISK算法[J].液晶与显示,2016,31(3):324-330.
CHEN S C, LIU J H, HE L Y, et al. Improved BRISK algorithm used in image mosaic [J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(3): 324-330. (in Chinese)

引用该论文

WANG Jian,YU Ming,REN Hong-e. Improved ORB algorithm used in image stitching[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(6): 520-527

王 健,于 鸣,任洪娥. 一种用于图像拼接的改进ORB算法[J]. 液晶与显示, 2018, 33(6): 520-527

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF