首页 > 论文 > 液晶与显示 > 33卷 > 5期(pp:418-426)

基于极坐标Lagrange插值的航拍图像畸变校正算法

Aerial image distortion correction algorithm based on polar coordinate Lagrange interpolation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由于航拍图像的拍摄高度远低于卫星图像拍摄高度,因此每个拍摄地点的建筑投影差大小和方向都不相同,图片畸变严重。此外,考虑到图像边缘区域的畸变程度远大于图像中心区域的畸变程度,本文提出了一种基于极坐标的Lagrange插值的逐点畸变校正方法。利用该方法在极坐标系内对单个像素点进行插值,然后根据插值结果对像素点进行校正,再将其坐标从极坐标系变换回直角坐标系,最后采用此方法在整个航拍图像内逐点进行畸变校正。实验结果表明,校正后的航拍图像畸变程度不超过3%,证明该方法不但能有效地校正畸变图像,且与传统的利用DLT线性求解畸变校正矩阵等校正方法相比具有更为广泛的适用性。

Abstract

Since the height of aerial image shot is much lower than the height of satellite image shot, this may lead to the differences of the projection sizes and directions between every shooting location, which will result in serious picture distortion in most cases. In addition, the degree of distortion of the image edge region is much more serious than that in the center region, a distortion correction method based on Lagrange interpolation of polar coordinates has been proposed by this paper. We use this method to interpolate the single pixel in polar coordinates system. The pixel coordinate expression will be reconverted from polar coordinates to Cartesian coordinates after we corrected the pixel according the consequence of interpolation. And finally this method will be used to correct distortion pixel-by-pixel throughout the aerial image. The experiment results show that the corrected aerial image distortion does not exceed 3%, which proves that this algorithm can not only correct distortion image effectively, but also has a wide applicability compared with the traditional distortion correction methods, such as making use of the Direct Linear Transformation to obtain the distortion matrix.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/yjyxs20183305.0418

所属栏目:图像处理

收稿日期:2017-12-16

修改稿日期:2018-02-28

网络出版日期:--

作者单位    点击查看

马天娇:中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033中国科学院大学,北京 100049
韩广良:中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
孙海江:中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033

联系人作者:马天娇(962109241@qq.com)

备注:MA Tian-jiao (1992-), female, Jilin City, Jilin Province, mainly engaged in image processing research.

【1】ALIAKBARPOUR H, PALANIAPPAN K, SEETHARAMAN G. Parallax-tolerant aerial image georegistration and efficient camera pose refinement—without piecewise homographies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4618-4637.

【2】WANG G L, WANG X C, FAN B, et al. Feature extraction by rotation-invariant matrix representation for object detection in aerial image[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 851-885.

【3】XU F, LIU J H, WANG X. Distortion correction method for CCD image based on calibration[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(4): 633-640.

【4】GANDHIMATHI S, VASUKI S, ARIPUTHIRAN G. Atmospheric correction of remotely sensed multispectral satellite images in transform domain[C]//Proceedings of the 4th International Conference on Advanced Computing. Chennai, India: IEEE, 2012: 1-5.

【5】ZHOU Q F, LIU J H, LI G. Error analysis of geometric distortion correction of oblique images for array CCD aerial cameras[J]. Chinese Journal of Scientific Instrument, 2014, 35(S1): 1-8.

【6】SONG L M, LI Z Y, CHEN C M, et al. A correction method of color projection fringes in 3D contour measurement[J]. Optoelectronics Letters, 2015, 11(4): 303-306.

【7】CHEN T F, MA Z, LI P,et al. A camera calibration method based on non-metric distortion correction[J]. Control and Decision, 2012, 27(2): 243-246, 251.

【8】TANH S, ZHOU F Q, ZHANG W, et al. Automatic correspondence approach for feature points in camera calibration[J]. Journal of Optoelectronics·Laser, 2011, 22(5): 736-739.

【9】HAN G L, SONG J Z.An equivalent surface model of image distortion and the correction algorithm[J]. Optical Technique, 2005, 31(1): 122-124.

【10】STEPANOV A, SMITHJ M. Modeling wildfire propagation with Delaunay triangulation and shortest path algorithms[J]. European Journal of Operational Research, 2012, 218(3): 775-788.

【11】WUH Y, GUAN X F, GONG J Y. A parallel streaming Delaunay triangulation algorithm for LiDAR points on multicore architectures[J]. Computers & Geosciences, 2011, 37(9): 1355-1363.

【12】SHENG M, SU B Y. Edge-preserving image interpolation algorithm based on blending interpolation spline[J]. Computer Engineering, 2011, 37(6): 218-220.

【13】GAPONENKO I, TCKMANTEL P, ZIEGLER B, et al. Computer vision distortion correction of scanning probe microscopy images[J]. Scientific Reports, 2017, 7(1): 669.

【14】FAN Y, ZHANG J C, CHEN N N, et al. New method for image geometric distortion correction[J]. Computer Engineering and Applications, 2009, 45(29): 194-197.

【15】HE M X, CAO W, ZHANG X. Design of vision measurement system of double optical paths with single CCD based on DSP[J]. Optoelectronics Letters, 2009, 5(6): 450-453.

【16】VICTORJ D. Analyzing receptive fields, classification images and functional images: challenges with opportunities for synergy[J]. Nature Neuroscience, 2005, 8(12): 1651-1565.

【17】XIAO Y L, SU X Y, XUE J P, et al. Pose estimation based on convex-relaxation global optimization algorithm in videogrammetry[J]. Journal of Optoelectronics·Laser, 2011, 22(9): 1384-1389.

【18】YUAN H Z, LI X F, WU Y Z, et al. Non-parametric geometric correction and mosaic of panorama camera[J]. Journal of Optoelectronics·Laser, 2012, 23(4): 762-767.

【19】WANG Q, LI Y J, ZHANG K, et al. Inverse log polar transformation algorithm based on sub-pixel interpolation[J]. Optoelectronics Letters, 2006, 2(3): 213-216.

引用该论文

MA Tian-jiao,HAN Guang-liang,SUN Hai-jiang. Aerial image distortion correction algorithm based on polar coordinate Lagrange interpolation[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(5): 418-426

马天娇,韩广良,孙海江. 基于极坐标Lagrange插值的航拍图像畸变校正算法[J]. 液晶与显示, 2018, 33(5): 418-426

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF