首页 > 论文 > 液晶与显示 > 33卷 > 5期(pp:443-449)

基于时空上下文和随机森林的人眼跟踪定位算法研究

Human eye locating and tracking using space-time context and random forest

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了得到人眼跟踪过程中更好的鲁棒性和实时性以及跟踪精度,提出一种基于自适应增强分类算法(AdaBoost)、随机森林(RF)和时空上下文(STC)的重定位跟踪算法。该算法结构分为3层,分别为AdaBoost人脸检测、STC人脸跟踪和RF人眼定位。首先,利用AdaBoost在第一帧识别出人脸,从而提取出人脸窗口。接着,使用时空上下文跟踪算法进行人脸跟踪。然后,联合定向梯度直方图(HOG)算法进行相似度判断,以达到目标丢失后继续跟踪的目的。最后,采用随机森林算法进行人眼定位。实验结果表明,与传统的随机森林人眼跟踪算法相比,该算法在跟踪速度达到原方法的2倍左右,并在跟踪精度和鲁棒性上和原算法相同。基本满足在裸眼3D显示时人脸跟踪和人眼定位的精度高、实时性快、鲁棒性好的要求。

Abstract

In order to obtain better robustness, real-time and tracking accuracy in human eye tracking process, this paper proposed a relocation tracking method based on adaptive boosting (AdaBoost), random forest (RF) and space-time context (STC). The algorithm structure was divided into three layers, which was AdaBoost face detection, STC face tracking and RF eye positioning. First, AdaBoost was used to recognize faces in the first frame to extract face windows. Then, the spatio-temporal context algorithm was employed for face tracking. Afterwards, the histogram of oriented gradient (HOG) was used to judge the similarity, so as to achieve the goal of tracking after the target is lost. Finally, the random forest algorithm was used to locate the human eye. Experimental results indicate that the algorithm has a tracking speed of about 2 times as much as the original method. Moreover, this method had the same tracking accuracy and robustness as the original algorithm. It can satisfy high precision for human eye location, real-time, good robustness in naked eye 3D display.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751.1

DOI:10.3788/yjyxs20183305.0443

所属栏目:图像处理

基金项目:国家自然科学基金(No.61775026);装备预研基金重大项目(No. 6140923070101)

收稿日期:2018-03-07

修改稿日期:2018-03-15

网络出版日期:--

作者单位    点击查看

刘林涛:电子科技大学 电子科学技术研究院,四川 成都 611731
董雪莹:贵州大学 大数据与信息工程学院,贵州 贵阳 550025
刘 俊:电子科技大学 电子科学技术研究院,四川 成都 611731
汪相如:电子科技大学 光电科学与工程学院,四川 成都 610054
黄子强:电子科技大学 电子科学技术研究院,四川 成都 611731

联系人作者:刘林涛(lintaoliu@foxmail.com)

备注:刘林涛(1990-),男,河南开封人,硕士研究生,2015年进入电子科技大学电子科学技术研究院攻读硕士学位。主要从事3D显示中的图像处理及人脸识别人眼识别等方面的研究。

【1】熊晶莹,戴明. 适应移动智能设备的目标跟踪器[J].光学精密工程,2017,12(25): 3152-3159.
XIONG J Y, DAI M.Design of tracker for mobile smart devices[J]. Opt. Precision Eng., 2017, 12(25): 3152-3159 . (in Chinese)

【2】田华,曾小名,戴涛涛,等.柱透镜光栅投影3D显示的视点数与串扰容限[J]. 液晶与显示,2013, 28(3):330-337.
TIANG H, ZHENG X M, DAI X,et al.. New Problems about Number of Views and Grosstalk Tolerance in Projective AutoSterepic Display Based on Lenticlar Grating[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 330-337. (in Chinese)

【3】王嘉辉, 邓玉桃, 苏剑邦,等.全高清裸眼3D显示效果的评价与测量[J]. 液晶与显示,2013,28(5):805-809.
WANG J H, DENG YT , SU J B, et al.. Evaluation and Measurement of Display Effect in Full High Resolution Autostereoscopic Display[J]. Journal of Liquid Crystals and Displays, 2013, 28 (5): 805-809. (in Chinese)

【4】谢雨桐, 苏晓煌, 郑集文,等.裸眼3D显示设备关键指标测试方案的研究[J]. 液晶与显示,2015,5(30):888-893.
XIE Y T, SU X H, Z J W,et al.. Key properties of autostereoscopic display[J]. Journal of Liquid Crystals and Displays, 2015, 5(30): 888-893. (in Chinese)

【5】VALENTI R, GEVERS T. Accurate eye center location and tracking using isophote curvature[C]. Computer Vision and Pattern Recognition. America: CVPR 2008: 1-8.

【6】PENG K, CHEN L T, RUAN S, KUKHAREY G. A robust algorithm for eye detection on gray intensity face without spectacles[J]. J. Comput. Sci. Technol, 2005, 5(8): 127-132.

【7】FASEL I, FORTENBERRY B, MOVELLAN J. A generative framework for real time object detection and classification[J]. Computer Vision & Image Understanding, 2005, 98(1): 182-210.

【8】REN S, CAO X, WEI Y, SUN J. Face Alignment at 3000 FPS via Regressing Local Binary Features[C]. Computer Vision and Pattern Recognition. America: CVPR, 2014:1685-1692.

【9】ZHANG K, ZHANG L, YANG M, ZHANG, D. Fast tracking via spatio-temporal context learning[J]. Computer Science, 2013,11(8): 1-16.

【10】DALAL N,TRIGGS B. Histograms of Oriented Gradients for Human Detection[C].P Computer Vision and Pattern Recognition. America: CVPR, 2005:886-893.

【11】BREIMAN L. Random Forests[J]. Machine Learing. 2001, 45(1): 5-32.

【12】BURGOS A, X P, PERONA P, DOLL, PIOTR R. Robust Face Landmark Estimation under Occlusion[C]. Computer Vision and Pattern Recognition. America: CVPR, 2013:1513-1520.

【13】XING X, TORRE F, F D L. Supervised descent method and its applications to face alignment[C]. Computer Vision and Pattern Recognition. America: CVPR, 2013:532-539.

引用该论文

LIU Lin-tao,DONG Xue-ying,LIU Jun,WANG Xiang-ru,HUANG Zi-qiang. Human eye locating and tracking using space-time context and random forest[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(5): 443-449

刘林涛,董雪莹,刘 俊,汪相如,黄子强. 基于时空上下文和随机森林的人眼跟踪定位算法研究[J]. 液晶与显示, 2018, 33(5): 443-449

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF