Photonics Research, 2018, 6 (8): 08000A51, Published Online: Aug. 1, 2018  

Passive parity-time-symmetry-breaking transitions without exceptional points in dissipative photonic systems [Invited] Download: 592次

Author Affiliations
Department of Physics, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, USA
Abstract
Over the past decade, parity-time (PT)-symmetric Hamiltonians have been experimentally realized in classical, optical settings with balanced gain and loss, or in quantum systems with localized loss. In both realizations, the PT-symmetry-breaking transition occurs at the exceptional point of the non-Hermitian Hamiltonian, where its eigenvalues and the corresponding eigenvectors both coincide. Here, we show that in lossy systems, the PT transition is a phenomenon that broadly occurs without an attendant exceptional point, and is driven by the potential asymmetry between the neutral and the lossy regions. With experimentally realizable quantum models in mind, we investigate dimer and trimer waveguide configurations with one lossy waveguide. We validate the tight-binding model results by using the beam-propagation-method analysis. Our results pave a robust way toward studying the interplay between passive PT transitions and quantum effects in dissipative photonic configurations.

Yogesh N. Joglekar, Andrew K. Harter. Passive parity-time-symmetry-breaking transitions without exceptional points in dissipative photonic systems [Invited][J]. Photonics Research, 2018, 6(8): 08000A51.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!