Photonics Research, 2018, 6 (8): 08000805, Published Online: Aug. 1, 2018  

Intermodal four-wave mixing in silicon waveguides Download: 517次

Author Affiliations
1 Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
2 SM Optics s.r.l., Research Programs, Via John Fitzgerald Kennedy 2, 20871 Vimercate, Italy
3 Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
4 Centre for Materials and Microsystems, Fondazione Bruno Kessler, 38123 Trento, Italy
Abstract
In this work, we report the modeling and the experimental demonstration of intermodal spontaneous as well as stimulated four-wave mixing (FWM) in silicon waveguides. In intermodal FWM, the phase-matching condition is achieved by exploiting the different dispersion profiles of the optical modes in a multimode waveguide. Since both the energy and the wave vectors have to be conserved in the FWM process, this leads to a wide tunability of the generated photon wavelength, allowing us to achieve a large spectral conversion. We measured several waveguides that differ by their widths and demonstrate large signal generation spanning from the pump wavelength (1550 nm) down to 1202 nm. A suited setup evidences that the different waves propagated indeed on different order modes, which supports the modeling. Despite observing a reduced efficiency with respect to intramodal FWM due to the decreased modal overlap, we were able to show a maximum spectral distance between the signal and idler of 979.6 nm with a 1550 nm pump. Our measurements suggest the intermodal FWM is a viable means for large wavelength conversion and heralded photon sources.

Stefano Signorini, Mattia Mancinelli, Massimo Borghi, Martino Bernard, Mher Ghulinyan, Georg Pucker, Lorenzo Pavesi. Intermodal four-wave mixing in silicon waveguides[J]. Photonics Research, 2018, 6(8): 08000805.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!