Photonics Research, 2018, 6 (10): 100000C1, Published Online: Aug. 21, 2018  

Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers Download: 720次

Author Affiliations
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices & Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510006, China
2 Guangdong Provincial Engineering Technology Research Center for Microstructured Functional Fibers and Devices, South China Normal University, Guangzhou 510006, China
3 e-mail: xuwch@scnu.edu.cn
Abstract
Searching for an ultrahigh-repetition-rate pulse on the order of hundreds of gigahertz (GHz) is still a challenging task in the ultrafast laser community. Recently, high-quality silicon/silica-based resonators were exploited to generate a high-repetition-rate pulse based on the filter-driven four-wave mixing effect in fiber lasers. However, despite their great performance, the silicon/silica-based resonators still have some drawbacks, such as single waveband operation and low coupling efficiency between the fiber and resonators. To overcome these drawbacks, herein we proposed an all-fiber broadband resonator fabricated by depositing the graphene onto a microfiber knot. As a proof-of-concept experiment, the graphene-deposited broadband microfiber knot resonator (MKR) was applied to Er- and Yb-doped fiber lasers operating at two different wavebands, respectively, to efficiently generate hundreds-of-GHz-repetition-rate pulses. Such a graphene-deposited broadband MKR could open some new applications in ultrafast laser technology, broadband optical frequency comb generation, and other related fields of photonics.

Meng Liu, Rui Tang, Ai-Ping Luo, Wen-Cheng Xu, Zhi-Chao Luo. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers[J]. Photonics Research, 2018, 6(10): 100000C1.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!