首页 > 论文 > 激光与光电子学进展 > 55卷 > 8期(pp:81401--1)

基于光微流单模激光的液体折射率测量

Measurement of Liquid Refractive Index Based on Optofluidic Single Mode Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

制备了高品质因子的法布里-珀罗(F-P)光学微腔,采用溶于液体的有机染料罗丹明6G(R6G)作为增益介质,实现了单模光微流激光的产生,激光的半峰全宽为0.260 nm。在水的摩尔分数分别为1.09%,5.98%,11.91%,20.42%,30.75%,45.27%,51.89%的不同混合物溶剂(无水乙醇和去离子水)中实现了单模激光的产生,发现随着含水量的增加,中心波长向长波长方向移动,而当水的摩尔分数超过45.27%后,单模激光的中心波长开始向短波长方向移动。并根据单模激光波长的移动实现了混合溶液折射率的测量。测量结果及分析表明:最小可测量的折射率差值为6.31×10-4 ,测量灵敏度为411 nm/RIU(RIU为单位折射率),并对测量的结果及误差进行了分析。

Abstract

To achieve single-mode optical microfluidic laser, we prepare Fabry-Perot(F-P) optical microcavity with high quality factor and use the organic dye Rhodamine 6G (R6G) dissolved in liquid as gain medium. The full width at half maximum of laser output is 0.260 nm. In the following experiments, the generation of single-mode lasers in different mixed solutions (absolute ethanol and deionized water) with water molar fractions of 1.09%,5.98%,11.91%,20.42%,30.75%,45.27%,51.89% is achieved, respectively. It is found that the center wavelength of the single-mode laser moves toward long wavelength as water contents increasing. However, when the water molar fraction exceeds 45.27%, the center wavelength of the single-mode laser starts to move toward the short wavelength. Measurement of mixed solution refractive index is realized by single-mode laser wavelength movement. It is found that with the increase of water content, the measurement and analysis of the refractive index of the mixed solution show that the minimum measurable difference of refraction indexes is 6.31×10-4 and the measurement sensitivity is 411 nm/RIU, in which RIU is refractive index unit. The measured refractive index results and errors are analyzed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.3

DOI:10.3788/lop55.081401

所属栏目:激光器与激光光学

基金项目:国家自然科学基金面上项目(61471254)、山西省自然科学基金(201601D011010)

收稿日期:2018-02-11

修改稿日期:2018-03-25

网络出版日期:2018-03-28

作者单位    点击查看

韩超:太原理工大学新型传感器与智能控制教育部重点实验室, 山西, 太原 030024
邱诚玉:太原理工大学新型传感器与智能控制教育部重点实验室, 山西, 太原 030024
侯梦迪:太原理工大学新型传感器与智能控制教育部重点实验室, 山西, 太原 030024
张婷婷:太原理工大学新型传感器与智能控制教育部重点实验室, 山西, 太原 030024
王文杰:太原理工大学新型传感器与智能控制教育部重点实验室, 山西, 太原 030024

联系人作者:韩超(15735654936@163.com)

【1】Ke L D, Chen W Y, Zhang Y, et al. Optimizing design for sensitivity improvement of refractive index sensors based on photonic crystal waveguide[J]. Laser & Optoelectronics Progress, 2014, 51(5): 052304.
柯林佟, 陈卫业, 张洋, 等. 基于光子晶体波导的折射率传感器的灵敏度优化设计[J]. 激光与光电子学进展, 2014, 51(5): 052304.

【2】Rong M, Zhang L S. Liquid content measurement with fiber Bragg grating sensor[J]. Laser & Optoelectronics Progress, 2008, 45(5): 65-68.
荣民, 张连水. 光纤光栅传感器检测液体浓度[J]. 激光与光电子学进展, 2008, 45(5): 65-68.

【3】White I M, Fan X. On the performance quantification of resonant refractive index sensors[J]. Optics Express, 2008, 16(2): 1020-1028.

【4】Zhang D Y, Zhao L, Wang X X, et al. A refractive index sensor based on composite structure of dielectric grating with metal films[J]. Acta Optica Sinica, 2017, 37(11): 1124001.
张东阳, 赵磊, 王向贤, 等. 一种基于介质光栅金属薄膜复合结构的折射率传感器[J]. 光学学报, 2017, 37(11): 1124001.

【5】Reynolds T, Riesen N, Meldrum A, et al. Fluorescent and lasing whispering gallery mode microresonators for sensing applications[J]. Laser and Photonics Reviews, 2017, 11(2): 1600265.

【6】Franois A, Riesen N, Hong J, et al. Polymer based whispering gallery mode laser for biosensing applications[J]. Applied Physics Letters, 2015, 106(3): 60-82.

【7】Wienhold T, Kraemmer S, Wondimu S F, et al. All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers[J]. Lab on A Chip, 2015, 15(18): 3800-3806.

【8】Afshar V S, Henderson M R, Greentree A D, et al. Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems[J]. Optics Express, 2014, 22(9): 11301-11311.

【9】Liang H Q, Liu B, Chen J, et al. High sensitive elliptic side core surface plasmon resonance refractive index sensing characteristics based on dual-core photonic crystal fiber[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090601.
梁红勤, 刘彬, 陈佳, 等. 基于双芯光子晶体光纤的高灵敏度椭圆侧芯表面等离子体共振折射率传感特性[J]. 激光与光电子学进展, 2017, 54(9): 090601.

【10】Zhang X H, Liu C, Liang C, et al. Microlens array applied for laser induced fluorescence detection[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080402.
张学海, 刘冲, 梁超, 等. 应用于激光诱导荧光检测的微透镜阵列[J]. 激光与光电子学进展, 2017, 54(8): 080402.

【11】Shi S X, Yang Q W, Ouyang X P, et al. Measurement technique of signal noise ratio based on resonator oscillation for femtosecond single-shot pulse[J]. Chinese Journal of Lasers, 2016, 43(9): 0904001.
石帅旭, 杨庆伟, 欧阳小平, 等. 谐振腔振荡式飞秒单次脉冲信噪比的测量技术[J]. 中国激光, 2016, 43(9): 0904001.

【12】He Y L, Chen Z Y, Wu F T. Effects of coherent and incoherent light sources on resolution of bessel beam imaging system[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090301.
何艳林, 陈姿言, 吴逢铁. 相干和非相干光源对贝塞尔光束成像系统分辨率的影响[J]. 激光与光电子学进展, 2016, 53(9): 090301.

【13】Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006, 442(7101): 381-386.

【14】Chen Y, Lei L, Zhang K, et al. Optofluidic microcavities: dye-lasers and biosensors[J]. Biomicrofluidics, 2010, 4(4): 043002.

【15】Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 2011, 5(7): 406-410.

【16】Lee W, Li H, Suter J D, et al. Tunable single mode lasing from an on-chip optofluidic ring resonator laser[J]. Applied Physics Letters, 2011, 98(6): 061103.

【17】Lahoz F, Martin I R, Gil-Rostra J, et al. Portable IR dye laser optofluidic microresonator as a temperature and chemical sensor[J]. Optics Express, 2016, 24(13): 14383-14392.

【18】Rioboo R J, Philipp M, Ramos M A, et al. Concentration and temperature dependence of the refractive index of ethanol-water mixtures: influence of intermolecular interactions[J]. The European Physical Journal E, Soft matter, 2009, 30(1): 19-26.

【19】Ng S P, Loo F C, Wu S Y, et al. Common-path spectral interferometry with temporal carrier for highly sensitive surface plasmon resonance sensing[J]. Optics Express, 2013, 21(17): 20268-20273.

【20】Jágerská J, Zhang H, Diao Z, et al. Refractive index sensing with an air-slot photonic crystal nanocavity[J]. Optics Letters, 2010, 35(15): 2523-2525.

【21】Iqbal M, Gleeson M A, Spaugh B, et al. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(3): 654-661.

【22】Zhang M, Peh J, Hergenrother P J, et al. Detection of protein-small molecule binding using a self-referencing external cavity laser biosensor[C]. Journal of the American Chemical Society, 2014, 136(16): 5840-5843.

引用该论文

Han Chao,Qiu Chenyu,Hou Mengdi,Zhang Tingting,Wang Wenjie. Measurement of Liquid Refractive Index Based on Optofluidic Single Mode Laser[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081401

韩超,邱诚玉,侯梦迪,张婷婷,王文杰. 基于光微流单模激光的液体折射率测量[J]. 激光与光电子学进展, 2018, 55(8): 081401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF