首页 > 论文 > 激光与光电子学进展 > 55卷 > 8期(pp:81008--1)

基于曲率特征的漂移配准方法

Drift Registration Based on Curvature Characteristics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

点云配准是三维建模的关键步骤,而配准速率又是其中的一个瓶颈。实际中点云数据规模大并且对配准速率有一定要求。针对配准点云规模增大导致的配准速率退化以及点云距离过大导致配准失败的情况,结合曲率特征与一致性漂移思想提出一种快速配准点云的方法,首先计算点云曲率特征,然后对比点云间的曲率相似度,提取具有相似结构的特征点作为配准点云。实验表明,该方法不仅将配准的时间消耗缩减1/2左右,并且能够配准距离200个单位坐标差的点云。

Abstract

Point registration is a critical step of three-dimensional modeling, but the registration rate has been a major bottleneck restricting development of point registration. In the real life, the point registration data are large in scale and have certain requirement of the registration rate. Concerning decrease of the registration rate resulted from a large point registration scale and potential registration failure caused by a too large cloud distance, this paper combines features of curvature and the concept of coherent point drift to propose a quick point registration method. To begin with, the point cloud curvature is calculated. Then, the curvature similarity between point clouds is compared. The registered point clouds with feature points similar in the structure are extracted. This experiment suggests that this method can not only reduce the time consumption of registration by around two folds, but also register point clouds within the distance of 200 units of coordinate difference.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP249

DOI:10.3788/lop55.081008

所属栏目:图像处理

收稿日期:2018-02-28

修改稿日期:2018-03-08

网络出版日期:2018-03-19

作者单位    点击查看

石珣:西北师范大学计算机科学与工程学院, 甘肃 兰州 730070
任洁:兰州城市学院信息工程学院, 甘肃 兰州 730070
任小康:西北师范大学计算机科学与工程学院, 甘肃 兰州 730070
任进军:西北师范大学计算机科学与工程学院, 甘肃 兰州 730070
袁芝丰:西北师范大学计算机科学与工程学院, 甘肃 兰州 730070

联系人作者:石珣(471019001@qq.com); 任小康(2352937978@qq.com);

【1】Wei S B, Wang S Q, Zhou C H, et al. An iterative closest point algorithm based on biunique correspondence of point clouds for 3D reconstruction[J]. Acta Optica Sinica, 2015, 35(5): 0515003.
韦盛斌, 王少卿, 周常河, 等. 用于三维重建的点云单应性迭代最近点配准算法[J]. 光学学报, 2015, 35(5): 0515003.

【2】Zhang X, Zhang A W, Wang Z H. Point cloud registration based on improved normal distribution transform algorithm[J]. Laser & Optoelectronics Progress, 2014, 51(4): 041002.
张晓, 张爱武, 王致华. 基于改进正态分布变换算法的点云配准[J]. 激光与光电子学进展, 2014, 51(4): 041002.

【3】Yang S J, Zhang K S, Shao Y S. Strip adjustment method for airborne lidar system[J]. Chinese Journal of Lasers, 2017, 44(12): 1210003.
杨书娟, 张珂殊, 邵永社. 机载激光雷达系统的航带平差法[J]. 中国激光, 2017, 44(12): 1210003.

【4】Wang Y. Registration of array laser three dimension imaging point cloud[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016.
王岩. 阵列激光三维成像点云数据配准技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2016.

【5】Huang Z W, Liu F, Hu G W. Improved method for LiDAR point cloud data filtering based on hierarchical pseudo-grid[J]. Acta Optica Sinica, 2017, 37(8): 0828004.
黄作维, 刘峰, 胡光伟. 基于多尺度虚拟格网的LiDAR点云数据滤波改进方法[J]. 光学学报, 2017, 37(8): 0828004.

【6】Wu M Q, Li Z W, Zhong K, et al. Adaptive point cloud registration method based on geometric features and photometric features[J]. Acta Optica Sinica, 2015, 35(2): 0215002.
伍梦琦, 李中伟, 钟凯, 等. 基于几何特征和图像特征的点云自适应拼接方法[J]. 光学学报, 2015, 35(2): 0215002.

【7】Besl P J,McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.

【8】Chui H, Rangarajan A. A feature registration framework using mixture models[C]∥Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, 2000: 190-197.

【9】Jian B, Vemuri B C. Robust point set registration using Gaussian mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1633-1645.

【10】Myronenko A, Song X. Point set registration: coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275.

【11】Campbell D, Petersson L. GOGMA: globally-optimal Gaussian mixture alignment[C]. Computer Vision and Pattern Recognition,2016: 5685-5694.

【12】Huang Y, Da F P, Tao H J. An automatic registration algorithm for point cloud based on feature extraction[J]. Chinese Journal of Lasers, 2015, 42(3): 0308002.
黄源, 达飞鹏, 陶海跻. 一种基于特征提取的点云自动配准算法[J]. 中国激光, 2015, 42(3): 0308002.

【13】Li R Z, Yang M, Tian Y, et al. Point cloud registration algorithm based on the ISS feature points combined with improved ICP algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111503.
李仁忠, 杨曼, 田瑜, 等. 基于ISS特征点结合改进ICP的点云配准算法[J]. 激光与光电子学进展, 2017, 54(11): 111503.

【14】Zeng F X, Li L, Diao X P. Iterative closest point algorithm registration based on curvature features[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011003.
曾繁轩, 李亮, 刁鑫鹏. 基于曲率特征的迭代最近点算法配准研究[J]. 激光与光电子学进展, 2017, 54(1): 011003.

【15】Shu C X, He Y T, Sun Q K. Point cloud registration based on convolutional neural network[J]. Laser & Optoelectronics Progress, 2017, 54(3): 031001.
舒程珣, 何云涛, 孙庆科. 基于卷积神经网络的点云配准方法[J]. 激光与光电子学进展, 2017, 54(3): 031001.

【16】Zhu Y J,Zhou L S, Zhang L Y. Registration of scattered cloud data[J].Journal of Computer-Aided Design & Computer Graphics, 2006, 18(4): 475-481.
朱延娟, 周来水, 张丽艳. 散乱点云数据配准算法[J]. 计算机辅助设计与图形学学报, 2006, 18(4): 475-481.

【17】Yang M, Lee E. Segmentation of measured point data using a parametric quadric surface approximation[J]. Computer-Aided Design, 1999, 31(7): 449-457.

引用该论文

Shi Xun,Ren Jie,Ren Xiaokang,Ren Jinjun,Yuan Zhifeng. Drift Registration Based on Curvature Characteristics[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081008

石珣,任洁,任小康,任进军,袁芝丰. 基于曲率特征的漂移配准方法[J]. 激光与光电子学进展, 2018, 55(8): 081008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF