首页 > 论文 > 激光与光电子学进展 > 55卷 > 8期(pp:82203--1)

基于有限元仿真的硫系玻璃模压工艺参数优化

Optimization of Molding Process Parameters of Chalcogenide Glass Based on Finite Element Simulation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于硫系玻璃材料Ge23Se67Sb10的热机械特性,建立了模压工艺模型,仿真模拟了模压温度、摩擦系数及模压速率对硫系玻璃材料模压成型后等效应力的影响。与L-BAL42材料的模压仿真数据进行对比,讨论了硫系玻璃与传统可见光玻璃在模压工艺上的区别,并优化了模压工艺参数。研究结果表明,随着模压温度的升高、摩擦系数和模压速率的降低,材料模压成型后的等效应力减小。与对照材料相比,硫系材料Ge23Se67Sb10最适合通过改变模压速率来改变等效应力。

Abstract

Based on the thermodynamic properties of chalcogenide glass material Ge23Se67Sb10, the molding process model is established. The effects of molding temperature, friction coefficient and molding rate on the equivalent stress of chalcogenide glass after molding are simulated. Through the comparison with the molding simulation data of L-BAL42 material, the difference between chalcogenide glass and traditional visible light glass in the molding process is discussed, and the parameters of the molding process are optimized. The research results show that the equivalent stress decreases with the increase of molding temperature,the decrease of friction coefficient and molding rate. Compared with the control material, the chalcogenide material Ge23Se67Sb10 is the most suitable for changing the equivalent stress by changing the molding rate.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/lop55.082203

所属栏目:光学设计与制造

收稿日期:2018-03-01

修改稿日期:2018-03-06

网络出版日期:2018-03-16

作者单位    点击查看

刘学儒:长春理工大学光电工程学院, 吉林 长春 130022
薛常喜:长春理工大学光电工程学院, 吉林 长春 130022

联系人作者:薛常喜(xcx272479@sina.com); 刘学儒(liuxueru0403@163.com);

【1】Wang X H, Xue J Q, Tao H Z, et al. Researching and developing on sulphureous series glass material[J]. Development Guide to Building Materials, 2003(2): 28-31.
王小虎, 薛建强, 陶海征, 等. 硫系玻璃材料的研究进展[J]. 建材发展导向, 2003(2): 28-31.

【2】Shu C L, Tian A L, Hang L X, et al. Modern optics manufacturing technology[M]. Beijing: National Defense Industry Press, 2008: 317-322.
舒朝濂, 田爱玲, 杭凌侠, 等. 现代光学制造技术[M]. 北京: 国防工业出版社, 2008: 317-322.

【3】Zhou T F, Zhou Q, Xie J Q, et al. Surface defect analysis on formed chalcogenide glass Ge22Se58As20 lenses after the molding process[J]. Applied Optics, 2017, 56(30): 8394-8402.

【4】Yin S H, Jin S, Zhu K J, et al. Stress analysis of compression molding of aspherical glass lenses using finite element method[J]. Opto-Electronic Engineering, 2010,37 (10): 111-115.
尹韶辉, 靳松, 朱科军, 等. 非球面玻璃透镜模压成型的有限元应力分析[J]. 光电工程, 2010, 37(10): 111-115.

【5】Ni J J, Fan Y F, Chen W H. Simulation study of molding of aspherical optical glass lens[J]. Laser & Optoelectronics Progress, 2013, 50(3): 032201.
倪佳佳, 范玉峰, 陈文华. 非球面光学玻璃透镜的模压仿真研究[J]. 激光与光电子学进展, 2013, 50(3):032201.

【6】Fu X H, Jiang H Y, Zhang J, et al. Preparation of short and medium wave infrared anti-reflective coating based on chalcogenide glass[J]. Chinese Journal of Lasers, 2017, 44(9): 0903002.
付秀华, 姜洪妍, 张静, 等. 基于硫系玻璃的短中波红外减反膜研制[J]. 中国激光, 2017, 44(9): 0903002.

【7】Zhou T F, Yan J W, Masuda J, et al. Investigation on shape transferability in ultraprecision glass molding press for microgrooves[J]. Precision Engineering, 2011, 35(2): 214-220.

【8】Zhou T F, Yan J W, Masuda J, et al. Investigation on the viscoelasticity of optical glass in ultraprecision lens molding process[J]. Journal of Materials Processing Technology, 2009, 209(9): 4484-4489.

【9】Zhou T F, Yan J W, Kuriyagawa T. Evaluating the viscoelastic properties of glass above transition temperature for numerical modeling of lens molding process[J]. Proceedings of SPIE, 2007, 6624: 662403.

【10】Zhang Y T. Theory of thermo-viscoelasticity[M]. Tianjin: Tianjin University Press, 2002: 1-15.
张义同. 热黏弹性理论[M]. 天津: 天津大学出版社, 2002: 1-15.

【11】Guo D Z, Ren R B. Mechanics of layered viscoelastic systems[M]. Harbin: Harbin Institute of Technology Press, 2001: 24-34.
郭大智, 任瑞波. 层状黏弹性体系力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2001: 24-34.

【12】Jian Z Y, Zheng C, Chang F E, et al. Effect of composition on characteristic temperature and properties of GeXSe90-XSb10 glass[J]. Journal of Xi′an Technological University, 2009, 29 (1): 52-55.
坚增运, 郑超, 常芳娥, 等. 成分对GeXSe90-XSb10玻璃特征温度及性能的影响[J]. 西安工业大学学报, 2009, 29(1): 52-55.

【13】Dai S X, Chen H G, Li M Z, et al. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 2012, 41(4): 847-852.
戴世勋, 陈惠广, 李茂忠, 等. 硫系玻璃及其在红外光学系统中的应用[J]. 红外与激光工程, 2012, 41(4): 847-852.

【14】Luo S J, Huang F Y, Zhan D J, et al. Development of chalcogenide glasses for infrared thermal imaging system[J]. Laser & Infrared, 2010, 40(1): 9-13.
骆守俊, 黄富元, 詹道教, 等. 硫系玻璃在红外成像系统应用进展[J]. 激光与红外, 2010, 40(1): 9-13.

【15】Xue G Q. Research on homogeneity and molding process of chalcogenide glasses[D]. Shannxi: Xi′an Technology University, 2016.
薛改勤. 硫系玻璃的均匀性及模压工艺研究[D]. 陕西: 西安工业大学, 2016.

【16】Li C H, Wang L, Gan Y L, et al. Structural analysis of GexAsySe1-x-y chalcogenide glass thin-films by Raman spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(2): 023101.
李宬汉, 王丽, 甘渝林, 等. GexAsySe1-x-y硫系玻璃薄膜拉曼光谱分析[J]. 激光与光电子学进展, 2016, 53(2): 023101.

【17】Qian G Q,Tang G W,Qian Q, et al. Study on mid-infrared spectral properties of Ho3+/Yb3+ co-doped fluorogermanate glasses[J]. Acta Optica Sinica, 2016, 36(6): 0616002.
钱国权, 唐国武, 钱奇, 等. Ho3+/Yb3+共掺杂氟锗酸盐玻璃中红外光谱性质研究[J]. 光学学报, 2016, 36(6): 0616002.

引用该论文

Liu Xueru,Xue Changxi. Optimization of Molding Process Parameters of Chalcogenide Glass Based on Finite Element Simulation[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082203

刘学儒,薛常喜. 基于有限元仿真的硫系玻璃模压工艺参数优化[J]. 激光与光电子学进展, 2018, 55(8): 082203

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF