首页 > 论文 > 激光与光电子学进展 > 55卷 > 8期(pp:81405--1)

激光增材制造薄壁结构件工艺及性能的研究

Study on Process and Properties of Thin-Walled Structure Part by Laser Additive Manufacturing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用激光增材制造技术成形了薄壁结构件,采用粉末负离焦的方法解决了薄壁结构件成形过程中两端塌陷的问题,并分析了薄壁结构件的显微组织和力学性能。结果表明,当激光功率为1400 W,扫描速率为0.6 m·min-1,送粉速率为9.5 g·min-1时,获得了理想的单道熔覆层形貌。当单层提升量为0.57 mm时,薄壁结构件的表面无粘粉,无氧化色。熔覆层的高度和粉末利用率随粉末正负离焦量的增大而减小。薄壁结构件的显微组织主要为外延生长的树枝晶,离基体较近部位的枝晶较为粗大,而顶部为等轴晶组织。薄壁结构件的硬度高于基体的,且离基体较近部位的硬度较小。

Abstract

Based on the laser additive manufacturing technology, the thin-walled structural parts are formed. The method of negative defocusing of powder is adopted to solve the both-end collapse problem in the forming process of thin-walled structural parts. The microstructure and mechanical properties of thin-walled structural parts are analyzed. The results show that the ideal morphology of single track cladding layer is obtained at laser power of 1400 W, scanning speed of 0.6 m·min-1 and feeding speed of 9.5 g·min-1. The surface of the thin-walled structural part is free of powder and has no oxidation color when the lifting capacity of single layer is 0.57 mm. The height of cladding layer and the using efficiency of powder decrease with the increase of positive and negative powder defocusing. The microstructure of the thin-walled structural part is mainly dendrites growing epitaxially and the dendrites near the substrate are relatively coarse, however at the top is equiaxed grain structure. The hardness of the thin-walled structural part is higher than that of the substrate, and the hardness near the substrate is relatively smaller.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG142.1

DOI:10.3788/lop55.081405

所属栏目:激光器与激光光学

收稿日期:2018-03-05

修改稿日期:2018-03-15

网络出版日期:2018-03-19

作者单位    点击查看

肖鱼:华中科技大学材料科学与工程学院, 湖北 武汉 430074
路媛媛:湖北工业大学工程技术学院, 湖北 武汉 430064
郭溪溪:华中科技大学材料科学与工程学院, 湖北 武汉 430074
王涛:华中科技大学材料科学与工程学院, 湖北 武汉 430074
杜锦铮:华中科技大学材料科学与工程学院, 湖北 武汉 430074
刘德健:华中科技大学材料科学与工程学院, 湖北 武汉 430074

联系人作者:刘德健(djliu@mail.hust.edu.cn); 肖鱼(xyrhust@163.com);

【1】Song C F. The process research and numerical analysis of the thin-walled parts in laser cladding[D].Suzhou: Soochow University, 2013: 1-10.
宋成法. 激光熔覆成形薄壁零件的工艺研究及数值分析[D]. 苏州: 苏州大学, 2013: 1-10.

【2】Sun H S. Research on the rapid manufacturing of thin-walled part with unsmooth transition by coaxial inside-beam powder feeding[D]. Suzhou: Soochow University, 2012: 1-9.
孙后顺. 基于激光光内同轴送粉的非圆滑过渡薄壁件快速成形研究[D]. 苏州: 苏州大学, 2012: 1-9.

【3】Frazier W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering & Performance, 2014, 23(6): 1917-1928.

【4】Ford S, Despeisse M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges[J]. Journal of Cleaner Production, 2016,137: 1573-1587.

【5】Wu X Y, Lin X, Lü X W, et al. Study on microstructure and mechanical properties of laser solid forming 17-4 PH stainless steel[J]. Chinese Journal of Lasers, 2011, 38(2): 0203005.
吴晓瑜, 林鑫, 吕晓卫, 等. 激光立体成形17-4 PH 不锈钢组织性能研究[J]. 中国激光, 2011, 38(2): 0203005.

【6】Fang Q Q, Fu G Y, Wang C, et al. Laser direct forming technology of double thin-walled parts with connecting ribs[J]. Chinese Journal of Lasers, 2017, 44(2): 0202005.
方琴琴, 傅戈雁, 王聪, 等. 带连接筋双层薄壁件激光直接成形工艺[J]. 中国激光, 2017, 44(2): 0202005.

【7】Wang X Y, Wang Y F, Jiang H, et al. Laser cladding forming of round thin-walled parts with slope angle[J]. Chinese Journal of Lasers, 2014, 41(1): 0103006.
王续跃, 王彦飞, 江豪, 等. 圆形倾斜薄壁件的激光熔覆成形[J]. 中国激光, 2014, 41(1): 0103006.

【8】Deng Z Q, Shi S H, Zhou B, et al. Laser cladding forming of unequal-height curved arc-shaped thin-wall structures[J]. Chinese Journal of Lasers, 2017, 44(9): 0902005.
邓志强, 石世宏, 周斌, 等. 不等高弯曲弧形薄壁结构激光熔覆成形[J]. 中国激光, 2017, 44(9): 0902005.

【9】Tan H, Chen J, Zhang F Y, et al. Process analysis for laser solid forming of thin-wall structure[J]. International Journal of Machine Tools & Manufacture, 2010, 50(1): 1-8.

【10】Zhu G X, Zhang A F, Li D C, et al. Model of layer thickness of thin-walled parts in laser metal direct manufacturing[J]. Transactions of the China Welding Institution, 2010, 31(8): 57-60.
朱刚贤, 张安峰, 李涤尘, 等. 激光金属制造薄壁零件Z轴单层行程模型[J]. 焊接学报, 2010, 31(8): 57-60.

【11】Zhang K, Wang S J, Liu W J, et al. Characterization of stainless steel parts by laser metal deposition shaping[J]. Materials & Design, 2014, 55(6): 104-119.

【12】Zhang K, Liu W J, Shang X F. Research on the processing experiments of laser metal deposition shaping[J]. Optics and Laser Technology, 2007,39(3): 549-557.

【13】Gumann M, Bezenon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps[J]. Acta Materialia, 2001, 49(6): 1051-1062.

【14】Zhang X D, Zhu X L. Characterization on laser direct manufacturing metal thin wall cylinder[J]. Laser & Optoelectronics Progress, 2014,51(7): 071601.
张晓东, 朱晓亮. 激光直接制造薄壁圆筒零件的特性[J]. 激光与光电子学进展, 2014, 51(7): 071601.

【15】Guan K, Wang Z M, Gao M, et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel[J]. Materials & Design, 2013, 50: 581-586.

【16】Yu J S, Qiu C J, Zhou J, et al. Analysis on microstructure and tensile fracture characteristic of 304 stainless steel specimens made by laser rapid forming[J]. Laser & Optoelectronics Progress, 2012, 49(1): 011402.
余金水, 邱长军, 周炬, 等. 激光快速成形304不锈钢试件组织与拉伸断口特性分析[J]. 激光与光电子学进展, 2012, 49(1): 011402.

【17】Guo P. Study on mechanical properties and milling performance of stainless steel by laser additive manufacturing technique[D]. Jinan: Shandong University, 2017: 40-49.
郭鹏. 激光增材制造不锈钢的力学性能和铣削性能研究[D]. 济南: 山东大学, 2017: 40-49.

引用该论文

Xiao Yu,Lu Yuanyuan,Guo Xixi,Wang Tao,Du Jinzheng,Liu Dejian. Study on Process and Properties of Thin-Walled Structure Part by Laser Additive Manufacturing[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081405

肖鱼,路媛媛,郭溪溪,王涛,杜锦铮,刘德健. 激光增材制造薄壁结构件工艺及性能的研究[J]. 激光与光电子学进展, 2018, 55(8): 081405

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF