首页 > 论文 > 激光与光电子学进展 > 55卷 > 8期(pp:82804--1)

机载激光雷达用高重复频率亚纳秒双波长全固态激光器

High Repetition Rate Sub-Nanosecond Dual-Wavelength Solid-State Laser for Airborne Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了晶体材料、腔长、抽运功率等对调Q脉冲宽度的影响,研制了一台基于Nd∶YVO4晶体的高效率、结构紧凑的双波长激光器。该激光系统采用主振荡功率放大(MOPA)结构,振荡级产生重复频率为5 kHz、脉冲能量为400 μJ、脉冲宽度为1.1 ns的1064 nm基横模激光,通过878.6 nm零线抽运的Nd∶YVO4级联放大器,脉冲能量和脉冲宽度变为2.72 mJ和1.03 ns;通过三硼酸锂(LBO)晶体腔外倍频,获得了脉冲能量为1.54 mJ,倍频效率大于56%,激光脉冲宽度小于910 ps,峰值功率为1.7 MW的532 nm绿光激光输出。

Abstract

The effect of crystal material, cavity length, pump power and other parameters on the width of Q-switched pulse is investigated, and a compact dual-wavelength laser with high efficiency based on Nd∶YVO4 crystal is developed. Master oscillator power amplifier (MOPA) structure is used in the laser system. A transverse fundamental mode of 1064 nm pulse with repetition frequency of 5 kHz, pulse energy of 400 μJ and pulse width of 1.1 ns is generated in the oscillator. Through the 878.6 nm zero-line pumped cascade amplifier, pulse energy and pulse duration turn to 2.72 mJ and 1.03 ns, respectively. A 532 nm green laser pulse with energy of 1.54 mJ, second harmonic generation efficiency larger than 56%, pulse duration shorter than 910 ps and peak power of 1.7 MW is obtained through the external frequency doubling by lithium triborate (LBO) crystal.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.1

DOI:10.3788/lop55.082804

所属栏目:“激光雷达”专题

基金项目:国家重大科学仪器设备开发专项(2013YQ120343)

收稿日期:2018-03-15

修改稿日期:2018-04-16

网络出版日期:2018-04-23

作者单位    点击查看

陆俊:南京先进激光技术研究院, 江苏 南京 210000
丁建永:南京先进激光技术研究院, 江苏 南京 210000
贺岩:中国科学院上海光学精密机械研究所, 上海 201800
于广礼:南京先进激光技术研究院, 江苏 南京 210000
杨彬:南京先进激光技术研究院, 江苏 南京 210000
姚红权:南京先进激光技术研究院, 江苏 南京 210000
周军:南京先进激光技术研究院, 江苏 南京 210000

联系人作者:周军(joe427@siom.ac.cn); 陆俊(junlu@siom.ac.cn);

【1】ern P, Jelínkov H, Zverev P G, et al. Solid state lasers with Raman frequency conversion[J]. Progress in Quantum Electronics, 2004, 28(2): 113-143.

【2】Ostermeyer M, Kappe P, Menzel R, et al. Diode-pumped Nd∶YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system[J]. Applied Optics, 2005, 44(4): 582-590.

【3】Hwang D, Ryu S G, Misra N, et al. Nanoscale laser processing and diagnostics[J]. Applied Physics A, 2009, 96(2): 289-306.

【4】O′Neill W, Li K. High-quality micromachining of silicon at 1064 nm using a high-brightness MOPA-based 20-W Yb fiber laser[J]. Proceedings of the IEEE, 2009, 15(2): 462-470.

【5】Zhao M, Hao Q, Guo Z R, et al. Compact fiber-solid picosecond laser source with kilohertz repetition rate[J]. Chinese Journal of Lasers, 2018, 45(4): 0401010.
赵明, 郝强, 郭政儒, 等. 结构紧凑的kHz重复频率光纤-固体皮秒激光光源[J]. 中国激光, 2018, 45(4): 0401010.

【6】Ma Y F, Shen Y J, Xu L, et al. Dual-wavelength amplification properties of continuous-operation Yb∶YAG slab laser[J]. Chinese Journal of Lasers, 2018, 45(1): 0101006.
马艺芳, 申艺杰, 徐浏, 等. 连续运转Yb∶YAG板条激光器的双波长放大特性[J]. 中国激光, 2018, 45(1): 0101006.

【7】Lu J, Liu Z Z, Liu Y Q, et al. Femtosecond thin-disk regenerative amplifier under burst operation mode[J]. Chinese Journal of Lasers, 2017, 44(5): 0501008.
陆俊, 刘征征, 刘彦琪, 等. 突发运行模式下的飞秒碟片再生放大器[J]. 中国激光, 2017, 44(5): 0501008.

【8】Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 1996, 53(4): 1749-1761.

【9】Corkum P B, Brunel F, Sherman N K, et al. Thermal response of metals to ultrashort-pulse laser excitation[J]. Physical Review Letters, 1988, 61(25): 2886-2889.

【10】Forget S, Balembois F, Georges P, et al. A new 3D multipass amplifier based on Nd∶YAG or Nd∶YVO4 crystals[J]. Applied Physics B, 2002, 75(4/5): 481-485.

【11】Nghia N T, Hao N V, Orlovich V A, et al. Generation of nanosecond laser pulses at a 2.2-MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+∶YVO4 laser[J]. Quantum Electronics, 2011, 41(9): 790-793.

【12】Wang J G, Sun Z,Jiang M H, et al. Experimental study of nanosecond Nd∶YAG rod double-pass amplification[J]. Journal of Optoelectronics·Laser, 2012, 23(6): 1031-1034.
王金国, 孙哲, 姜梦华, 等. 1 ns脉宽激光Nd∶YAG双通放大的实验研究[J]. 光电子·激光, 2012, 23(6): 1031-1034.

【13】Guo X Y, Tokita S, Kawanaka J. 12 mJ Yb∶YAG/Cr∶YAG microchip laser[J]. Optics Letters, 2018, 43(3): 459-461.

【14】Koechner W. Solid-state laser engineering[M]. Atlanta: Springer, 2006.

【15】Degnan J J. Theory of the optimally coupled Q-switched laser[J]. Proceedings of the IEEE, 1989, 25(2): 214-220.

【16】Zhang X, Feng C, Xie X Y, et al. Nanosecond electro-optically Q-switched Nd∶YVO4 laser[J]. High Power Laser and Particle Beams, 2011, 23(9): 2361-2364.
张翔, 冯驰, 谢希盈, 等. 纳秒电光调Q Nd∶YVO4激光器[J]. 强激光与粒子束, 2011, 23(9): 2361-2364.

引用该论文

Lu Jun,Ding Jianyong,He Yan,Yu Guangli,Yang Bin,Yao Hongquan,Zhou Jun. High Repetition Rate Sub-Nanosecond Dual-Wavelength Solid-State Laser for Airborne Lidar[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082804

陆俊,丁建永,贺岩,于广礼,杨彬,姚红权,周军. 机载激光雷达用高重复频率亚纳秒双波长全固态激光器[J]. 激光与光电子学进展, 2018, 55(8): 082804

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF