首页 > 论文 > 激光与光电子学进展 > 55卷 > 8期(pp:81502--1)

基于运动恢复结构的空间点定位方法

Method of Space Point Positioning Based on Structure-from-Motion

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对大型工件难以进行全尺寸测量的问题,提出一种基于运动恢复结构的便携式空间点定位方法。首先使用具有身份唯一性的编码点粘贴在被测物体表面,实现各视图对应点的稳定匹配;接着为避免不同坐标系下位姿转换引起的累积误差,选定统一的坐标系,提出基于重心约束的基准定位算法;在此基础上,进一步确定相机运动参数的稳健性估计;最后利用多视图几何限制重建标志点的三维坐标,并用光束法平差对三维重建结果和相机内外参数进行全局优化。实验结果表明,该方法可实现大型工件的高精度测量,三维测量精度最大误差为0.133 mm,平均误差为0.031 mm,可满足工业现场对大型工件测量精度的要求。

Abstract

In view of the difficulty of full-scale measurement of large workpieces, a portable method of space point positioning based on structure-from-motion (SfM) is proposed. First, the coded target with unique identity is pasted on the surface of the measured object to achieve the stable matching of the corresponding points of each view. Then, to avoid the cumulative error caused by the position transformation in different coordinate systems, a unified coordinate system is selected, and a reference location algorithm based on the center of barycenter constraint is proposed. On this basis, the robust estimation of the camera motion parameters is further determined, and the 3D coordinates of the mark points are reconstructed by the multi view geometric constraints, and the global optimization of the 3D reconstruction results and the intrinsic and extrinsic parameters of the camera is carried out by the beam adjustment. The experimental results show that the method can achieve high precision measurement for large workpieces. The maximum error of 3D measurement is 0.133 mm and the average error is 0.031 mm, which can meet the requirements of industrial field measurement precision for large workpieces.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop55.081502

所属栏目:机器视觉

基金项目:国家自然科学基金(61571478)

收稿日期:2018-04-16

修改稿日期:2018-04-17

网络出版日期:2018-04-24

作者单位    点击查看

解则晓:中国海洋大学工程学院, 山东 青岛 266100
周作琪:中国海洋大学工程学院, 山东 青岛 266100

联系人作者:周作琪(zzq319@126.com); 解则晓(xiezexiao@ouc.edu.cn);

【1】Ding S W, Zhang X H, Yu Q F, et al. Overview of non-contact 3D reconstruction measurement methods[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070003.
丁少闻, 张小虎, 于起峰, 等. 非接触式三维重建测量方法综述[J]. 激光与光电子学进展, 2017, 54(7): 070003.

【2】Xie Z X, Zhu R X, Zhang A Q. Extrinsic parameters calibration of three-dimensional measurement system for ultra-large scale line-structured light sensor[J]. Chinese Journal of Lasers, 2017, 44(10): 1004003.
解则晓, 朱瑞新, 张安祺. 超大尺度线结构光传感器三维测量系统外参数标定[J]. 中国激光, 2017, 44(10): 1004003.

【3】Liu J W, Liang J, Liang X H, et al. Industrial vision measuring system for large dimension work-pieces[J]. Optics and Precision Engineering, 2010, 18(1): 126-134.
刘建伟, 梁晋, 梁新合, 等. 大尺寸工业视觉测量系统[J]. 光学 精密工程, 2010, 18(1): 126-134.

【4】Hu G, Zhang J, Yu L. The precision study of mark position after binarization for dynamic tests[J]. Proceedings of SPIE, 2016, 9903: 99032R.

【5】Li Z L, Han Z. Research anddevelopment of vision measurement system with marked targets[J]. Applied Mechanics & Materials, 2013, 336/338: 2003-2007.

【6】Zheng J D, Zhang L Y, Zhou L, et al. 3D target location with one single hand-held CCD camera[J]. Acta Aeronauticaet Astronautica Sinica, 2007, 28(6): 1521-1526.
郑建冬, 张丽艳, 周玲, 等. 基于单数码相机自由拍摄的空间点定位[J]. 航空学报, 2007, 28(6): 1521-1526.

【7】Jia S M, Wang K, Li X Z, et al. Monocular camera three dimensional reconstruction based on variation model[J]. Acta Optica Sinica, 2014, 34(4): 0415002.
贾松敏, 王可, 李秀智, 等. 基于变分模型的单目视觉三维重建方法[J]. 光学学报, 2014, 34(4): 0415002.

【8】Li X Z, Yang A L, Qin B L, et al. Monocular camera three dimensional reconstruction based on optical flow feedback[J]. Acta Optica Sinica, 2015, 35(5): 0515001.
李秀智, 杨爱林, 秦宝岭, 等. 基于光流反馈的单目视觉三维重建[J]. 光学学报, 2015, 35(5): 0515001.

【9】Xie Z X, Gao X, Zhu R X. Efficient extraction and robust recognition algorithm of circle coded target[J]. Journal of Optoelectronics·Laser, 2015, 26(3): 559-566.
解则晓, 高翔, 朱瑞新. 环状编码标记点的高效提取与鲁棒识别算法[J]. 光电子·激光, 2015, 26(3): 559-566.

【10】Chen M J, Zhou H C, Zhang L Y. Recognition ofmotion blurred coded targets based on convolutional neural network[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(10): 1844-1852.
陈明军, 周含策, 张丽艳. 基于卷积神经网络的运动模糊编码点识别[J]. 计算机辅助设计与图形学学报, 2017, 29(10): 1844-1852.

【11】Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. Cambridge: Cambridge University Press, 2004: 262-270.

【12】Tomasi C, Kanade T. Shape and motion from image streams under orthography: a factorization method[J]. International Journal of Computer Vision. 1992, 9(2): 137-154.

【13】Poelman C J, Kanade T. A paraperspective factorization method for shape and motion recovery[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1997, 19(3): 206-218.

【14】Quan L. Self-calibration of an affine camera from multiple views[J]. International Journal of Computer Vision, 1996, 19(1): 93-105.

【15】Sturm P F, Triggs B. A factorization based algorithm for multi-image projective structure and motion[J]Proceedings of European Conference on Computer Vision, 1996, 1065(3): 709-720.

【16】Yuan J Y, Liu J J, Wang K, et al. 3D reconstruction algorithm from uncalibrated images with high precision[J]. Application Research of Computers, 2012, 29(12): 4786-4788.
袁建英, 刘甲甲, 王凯, 等. 一种非定标图像高精度三维重建算法[J]. 计算机应用研究, 2012, 29(12): 4786-4788.

【17】Cui Z, Tan P. Global structure-from-motion by similarity averaging[C]∥IEEE International Conference on Computer Vision. IEEE Computer Society, Santiago, Chile, 2015: 864-872.

【18】Guan Q, Jin J J, Zhang J H, et al. Non-sequential multi-view 3D reconstruction base on ac-ransac[J]. Journal of Zhejiang University of Technology, 2015, 43(5): 473-478.
管秋, 金俊杰, 张剑华, 等. 基于最优RANSAC算法的非增加式多视图三维重建[J]. 浙江工业大学学报, 2015, 43(5): 473-478.

【19】Seitz S M, Szeliski R, Snavely N. Photo tourism: exploring photo collections in 3D[J].Acta Transactions on Graphics, 2006, 25(3): 835-846.

【20】Zhang J, Zhu D Y, Zhang Z Y. Nonmetric calibration of camera lens distortion[J]. Acta Optica Sinica, 2008, 28(8): 1552-1557.
张靖, 朱大勇, 张志勇. 摄像机镜头畸变的一种非量测校正方法[J]. 光学学报, 2008, 28(8): 1552-1557.

【21】Agarwal S, Mierle K. Ceres solver[EB/OL].[2018-4-1].http://ceres-solver.org.

引用该论文

Xie Zexiao,Zhou Zuoqi. Method of Space Point Positioning Based on Structure-from-Motion[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081502

解则晓,周作琪. 基于运动恢复结构的空间点定位方法[J]. 激光与光电子学进展, 2018, 55(8): 081502

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF