首页 > 论文 > 中国激光 > 45卷 > 8期(pp:804005--1)

紫外-真空紫外光电倍增管量子效率定标

Quantum Efficiency Calibration of UV-VUV Photomultiplier Tube

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了考察光电倍增管的性能,以使其满足空间遥感仪器在轨应用需求,利用氘灯、真空紫外单色仪、光电倍增管等构建了一套基于标准真空光电管的量子效率定标系统,依据光电倍增管的阴极量子效率测量原理,将光电倍增管改造成无电子束倍增的光电管,实现了由标准真空光电管到光电管R2078的标准传递; 并在此基础上,在国内首次实现了150~300 nm紫外-真空紫外波段光电管量子效率的直接测量。测量结果表明:由于光电管R2078的窗口材料为融石英,其在155 nm处的透过率最小,因此在155 nm处获取的量子效率最小,在230 nm波长处量子效率最大。最后对测量结果进行不确定度分析与估计,得到总的合成不确定度为3.4%。

Abstract

In order to investigate the performance of photomultiplier tube to meet the needs of on-orbit application requirements of the space remote sensing instruments, we construct a set of quantum efficiency calibration system based on standard vacuum phototube with deuterium lamp, vacuum ultraviolet monochromator, photomultiplier tube, and so on. According to the principle of the cathode quantum efficiency measurement about photomultiplier tube, the photomultiplier tube is transformed into phototube without electron beam multiplying, and the standard transferring from the standard vacuum phototube to the phototube R2078 is realized. On this basis, direct measurement of the quantum efficiency of phototube in ultraviolet-vacuum ultraviolet (UV-VUV) range of 150-300 nm is realized for the first time in China. The measurement results show that, owing to the window material is fused silica, the phototube R2078 has the lowest transmissivity at 155 nm, so the quantum efficiency obtained at 155 nm is the smallest, and the quantum efficiency at 230 nm is the largest. Finally, the uncertainty of the measurement results is analyzed and estimated, and the total synthetic uncertainty is 3.4%.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP73

DOI:10.3788/CJL201845.0804005

所属栏目:测量与计量

基金项目:国家自然科学基金(11573025)

收稿日期:2018-01-19

修改稿日期:2018-03-12

网络出版日期:2018-03-18

作者单位    点击查看

李寒霜:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
李博:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
王淑荣:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033

联系人作者:李博(libo0008429@163.com); 李寒霜(lihanshuang06@163.com); 王淑荣(srwang@ciomp.ac.cn);

【1】Wang R. Researching on the calibration technology of UV-VUV detector[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2010: 1-5.
王锐. 紫外-真空紫外探测器定标技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2010: 1-5.

【2】Xing J, Wang S R, Li F T. Comparison of spectral radiance calibrations of spectrodiometer for ultraviolet space remote sensing using three calibration techniques[J].Chinese Journal of Lasers, 2006, 33(4): 509-515.
邢进, 王淑荣, 李福田. 空间紫外遥感光谱辐射计光谱辐亮度定标三种方法的比较[J]. 中国激光, 2006, 33(4): 509-515.

【3】Kohler R, Goebel R, Pello R. Experimental procedures for the comparison of cryogenic radiometer at highest accuracy[J]. Metrologia, 1996, 33(6): 549-554.

【4】Chen X H, Zhai Y H, Zhang D, et al. Absolute self-calibration of the quantum efficiency of single-photon detectors[J]. Optics Letters, 2006, 31(16): 2441-2443.

【5】Klyshko D N. Use of two-photon light for absolute calibration of photoelectric detectors[J]. Soviet Journal Quantum Electronics, 1980, 10(9): 1112-1117.

【6】Feng Y, Zheng X B, Li J J, et al. Research in absolute calibration of single photon detectors by means of correlated photons[J]. Chinese Optics Letters, 2006, 4(6): 315-317.

【7】Polyakov S V, Migdall A L. High accuracy verification of a correlated-photon-based method for determining photon-counting detection efficiency[J]. Optics Express, 2007, 15(4): 1390-1407.

【8】Brida G, Degiovanni I P, Genovese M, et al. Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera[J]. Optics Express, 2010, 18(20): 20572-20584.

【9】Gao D Y, Xia M P, Li J J, et al. Absolute quantum efficiency calibration of analog detectors with twin photon current[J]. Journal of Shanghai Jiaotong University, 2017, 22(4): 411-416.

【10】Xia M P, Li J J, Gao D Y, et al. Detection of multimode spatial correlation of entangle photons to calibrate photomultiplier quantum-efficiency[J]. Acta Optica Sinica, 2015, 35(6): 0612006.
夏茂鹏, 李健军, 高冬阳, 等. 基于相关光子的多模式空间相关性定标光电倍增管的量子效率[J]. 光学学报, 2015, 35(6): 0612006.

【11】Lü L, Zhang Y C, Lin Y D. Research on absolute calibration of photodetector quantum-efficiency using entangled photons[J]. Acta Optica Sinica, 2012, 32(1): 0112004.
吕亮, 张寅超, 林延东. 纠缠光子法绝对定标光电探测器量子效率的研究[J]. 光学学报, 2012, 32(1): 0112004.

【12】Wang R, Song K F. High-accuracy radiance calibration system for ultraviolet detector[J]. Optics and Precision Engineering, 2009, 17(3): 469-474.
王锐, 宋克非. 高精度紫外探测器辐射定标系统[J]. 光学 精密工程, 2009, 17(3): 469-474.

【13】Wei Y L, Zhao B S, Sai X F, et al. Development of cesium telluride UV cathode with high quantum efficiency and solar-blind characteristics[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(7): 555-558.
韦永林, 赵宝升, 赛小峰, 等. 高量子效率碲化铯紫外日盲阴极研制[J]. 真空科学与技术学报, 2012, 32(7): 555-558.

【14】Mao Y T. Theory of error and precision analysis[M]. Beijing: National Defense Industry Press, 1982.
毛英泰. 误差理论与精度分析[M]. 北京: 国防工业出版社, 1982.

引用该论文

Li Hanshuang,Li Bo,Wang Shurong. Quantum Efficiency Calibration of UV-VUV Photomultiplier Tube[J]. Chinese Journal of Lasers, 2018, 45(8): 0804005

李寒霜,李博,王淑荣. 紫外-真空紫外光电倍增管量子效率定标[J]. 中国激光, 2018, 45(8): 0804005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF