首页 > 论文 > 中国激光 > 45卷 > 8期(pp:801008--1)

掺镱全光纤激光振荡器横向模式不稳定与受激拉曼散射的关系

Relationship Between Transverse Mode Instability and Stimulated Raman Scattering in Ytterbium Doped All-Fiber Laser Oscillator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了掺镱全光纤激光振荡器中横向模式不稳定效应与受激拉曼散射之间的关系。在纤芯直径为20 μm的单端抽运1.5 kW级全光纤激光振荡器中,当受激拉曼散射达到一定阈值时,横向模式不稳定效应突然出现,激光器输出功率突然减小,减小的输出功率由包层光滤除器倾泻到谐振腔外。实验发现:受激拉曼散射光谱增强、输出功率减小与包层光滤除器温度上升存在一定的关联; 通过缩短光纤长度抑制受激拉曼散射,可以将单端抽运激光振荡器的横向模式不稳定阈值增大到2 kW以上。对纤芯直径为25 μm的双端抽运激光振荡器进行研究,同样通过抑制受激拉曼散射增大了横向模式不稳定阈值,获得了大于5 kW的激光功率输出。实验结果初步验证了在非线性较强的情况下,受激拉曼散射是导致横向模式不稳定的原因,通过抑制受激拉曼散射可以增大横向模式不稳定阈值。

Abstract

The relationship between transverse mode instability effect and stimulated Raman scattering (SRS) in Ytterbium doped all-fiber laser oscillator is studied. In the single-end pumped 1.5 kW class all-fiber laser oscillator with core diameter of 20 μm, when the stimulated Raman scattering reaches to a certain value, the transverse mode instability effect appears, in this case, the power in the laser oscillator decreases. The decreased power is stripped out of the laser oscillator by the cladding light stripper. It is found in the experiment that the enhancement of the stimulated Raman scattering spectrum, the decrease of the fiber laser power, and the increase of the temperature of the cladding light stripper have an inherence relationship. By shortening the fiber in the laser to mitigate the stimulated Raman scattering, we can increase the transverse mode instability threshold in the single-end pumped laser oscillator up to 2 kW. Similar results by increasing transverse mode instability threshold employing suppression the stimulated Raman scattering are also validated in the double-side pumped all-fiber laser oscillator with fiber core diameter of 25 μm, and laser output greater than 5 kW is demonstrated. The experimental results validates that when the nonlinear effect is somewhat strong, the stimulated Raman scattering is the reason for the transverse mode instability. By mitigating the stimulated Raman scattering effect, we can also increase the transverse mode instability threshold.

广告组5 - 光束分析仪
补充资料

中图分类号:O436

DOI:10.3788/CJL201845.0801008

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金(61735007,61505260)

收稿日期:2018-03-05

修改稿日期:2018-04-08

网络出版日期:2018-04-15

作者单位    点击查看

王小林:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
陶汝茂:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
杨保来:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
史尘:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
张汉伟:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
周朴:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
许晓军:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073

联系人作者:王小林(chinaphotonics@163.com)

【1】Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.

【2】Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J].Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

【3】Zhu J J, Zhou P, Ma Y X, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654.

【4】Wirth C, Schreiber T, Rekas M, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier[J]. Proceedings of SPIE, 2010, 7580: 75801H.

【5】Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.

【6】Leidner J P, Marciante J R. Theimpact of thermal mode instability on core diameter scaling in high-power fiber amplifiers[C]∥Proceedings of Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California. New York: Optical Society of America, 2016: SM4Q.2.

【7】Hansen K R, Alkeskjold T T, Broeng J, et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Optics Letters, 2012, 37(12): 2382-2384.

【8】Wang X L, Tao R M, Xiao H, et al. Experimental studies of mode instability and thermal induced effects in all-fiber amplifier[C]∥Proceedings of Conference on Advanced Solid-State Lasers Congress, October 27-November 1, 2013, Paris, France. New York: Optical Society of America, 2013: JTh2A.44.

【9】Ran Y, Tao R M, Ma P F, et al. 560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 2015, 54(24): 7258-7263.

【10】Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7: 861-867.

【11】Otto H, Modsching N, Jauregui C,et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277.

【12】Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.

【13】Ward B G. Modeling of transient modal instability in fiber amplifiers[J].Optics Express, 2013, 21(10): 12053-12067.

【14】Lgsgaard J. Static thermo-optic instability in double-pass fiber amplifiers[J].Optics Express, 2016, 24(12): 13429-13443.

【15】Tao R, Ma P, Wang X, et al. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Research, 2015, 3(3): 86-93.

【16】Tao R M, Ma P F, Wang X L, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE Journal of Quantum Electronics, 2015, 51(8): 1600106.

【17】Tao R M, Ma P F, Wang X L, et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 2016, 14(2): 025002.

【18】Tao R M, Ma P F, Wang X L, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 2015, 12(8): 085101.

【19】Wang J M, Yan D P, Xiong S S, et al. Mode instability in high power all-fiber amplifier with large-mode-area gain fiber[J]. Optics Communications, 2017, 396: 123-126.

【20】Shi C, Tao R M, Wang X L, et al. New progress and phenomena of modal instability in fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201004.
史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44(2): 0201004.

【21】Tao R M, Wang X L, Xiao H, et al. Theoretical study of the threshold power of mode instability in high-power fiber amplifiers[J]. Acta Optica Sinica, 2014, 34(1): 0114002.
陶汝茂, 王小林, 肖虎, 等. 高功率光纤放大器中模式不稳定阈值功率的理论研究[J]. 光学学报, 2014, 34(1): 0114002.

【22】Tao R M, Zhou P, Xiao H, et al. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020001.
陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51(2): 020001.

【23】Tao R M, Wang X L, Zhou P, et al. Seed power dependence of mode instabilities in high-power fiber amplifiers[J]. Journal of Optics, 2017, 19(6): 065202.

【24】Tao R M, Ma P F, Wang X L, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17(4): 045504.

【25】Hejaz K, Norouzey A, Poozesh R,et al. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 2014, 24(2): 025102.

【26】Beier F, Hupel C, Kuhn S,et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 2017, 25(13): 14892-14899.

【27】Jauregui C, Otto H J, Breitkopf S, et al. Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities[J]. Optics Express, 2016, 24(8): 7879-7892.

【28】Stihler C, Jauregui C, Otto H,et al. Controlling mode instabilities at 628 W average output power in an Yb-doped rod-type fiber amplifier by active modulation of the pump power[J]. Proceedings of SPIE, 2017, 10083: 100830P.

【29】Lee K H, Lee K, Kim Y, et al. Transverse mode instability induced by stimulated Brillouin scattering in a pulsed single-frequency large-core fiber amplifier[J]. Applied Optics, 2015, 54(2): 189-194.

【30】Hejaz K, Shayganmanesh M, Rezaei-Nasirabad R, et al. Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers[J]. Optics Letters, 2017, 42(24): 5274-5277.

【31】Zhang H W, Wang X L, Yang B L, et al. All-fiber laser oscillator with output power break through 3 kW[J]. Chinese Journal of Lasers, 2017, 44(4): 0415001.
张汉伟, 王小林, 杨保来, 等. 输出功率突破3 kW的全光纤激光振荡器[J]. 中国激光, 2017, 44(4): 0415001.

【32】Zhang H W, Wang X L, Yang B L, et al. All-fiber laser oscillator realized 2.5 kW power and single mode output[J]. Chinese Journal of Lasers, 2016, 43(11): 1115002.
张汉伟, 王小林, 杨保来, 等. 全光纤振荡器实现2.5 kW单模输出[J]. 中国激光, 2016, 43(11): 1115002.

【33】Yu H L, Wang X L, Tao R M, et al. 1.5 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator[J]. Applied Optics, 2014, 53(34): 8055-8059.

【34】Kuznetsov M S, Antipov O L, Fotiadi A A, et al. Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers[J]. Optics Express, 2013, 21(19): 22374-22388.

引用该论文

Wang Xiaolin,Tao Rumao,Yang Baolai,Shi Chen,Zhang Hanwei,Zhou Pu,Xu Xiaojun. Relationship Between Transverse Mode Instability and Stimulated Raman Scattering in Ytterbium Doped All-Fiber Laser Oscillator[J]. Chinese Journal of Lasers, 2018, 45(8): 0801008

王小林,陶汝茂,杨保来,史尘,张汉伟,周朴,许晓军. 掺镱全光纤激光振荡器横向模式不稳定与受激拉曼散射的关系[J]. 中国激光, 2018, 45(8): 0801008

被引情况

【1】罗雪雪,奚小明,史尘,王小林,张汉伟,陶汝茂,韩凯,周朴,许晓军. 基于20/400 μm增益光纤的3 kW近单模全光纤放大器及其长时工作特性. 中国激光, 2019, 46(2): 201004--1

【2】党文佳,李哲,李玉婷,卢娜,张蕾,田晓,杨慧慧. 高功率连续波掺镱光纤激光器研究进展. 中国光学, 2020, 13(4): 676-694

【3】安毅,杨欢,肖虎,陈潇,黄良金,潘志勇,王小林,奚小明,马鹏飞,王泽锋,周朴,许晓军,姜宗福,陈金宝. 国产双锥形光纤实现4kW单模激光输出. 中国激光, 2021, 48(1): 115002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF