首页 > 论文 > 液晶与显示 > 33卷 > 4期(pp:261-270)

基于量子棒纳米纤维大面积定向排列的偏振增亮膜及其在宽色域显示中的应用

Large-scale active luminance film with enhanced polarization made of aligned quantum-rod-containing polymeric nanofibers for highly efficient and wide color gamut LCD displays

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

作为一种新兴的纳米材料,CdSe/CdS 量子棒的偏振发光特性使其在应用于新型液晶显示中极具潜力,而如何将量子棒材料在宏观尺度上大面积的定向排列是实现该技术的关键性问题。在本文中,我们报道了一种大面积、含定向排列量子棒、基于PMMA纳米纤维制成的偏振增亮膜。首先,采用一种新的TBP辅助合成方法,合成出具有核壳结构的CdSe/CdS量子棒。该材料的绝对量子产率达到了60%,发光波长的半峰宽为25 nm,具有182 nm的大Stokes位移。随后将这些量子棒溶于氯仿、DMF和PMMA混合溶液中制备用于静电纺丝的纺丝液。通过静电纺丝技术,将含有量子棒的聚合物纳米纤维通过滚筒收集处理,得到了一张透明、大面积、偏振增强的增亮膜, 5 cm2 增亮膜的偏振度为0.45。最后将制备的增亮膜嵌入一个液晶显示模组中测试,结果显示该模组的亮度提高了18.4%。这一结果表明我们制备的量子棒增亮膜在新型宽色域高光效显示领域具有非常广阔的应用前景。

Abstract

CdSe/CdS quantum rods (QRs) with polarized light emission have great potential in the next generation liquid crystal displays (LCD) backlight. Aligning these QRs in large scale is the key for practical applications. In this paper, we report a large scale film made of aligned QRs in PMMA fibers. Making use of a new tributylphosphine (TBP)-assisted synthetic method, we firstly synthesized uniform CdSe/CdS QRs with high absolute quantum yield (QY) of 60%, narrow full width at half maximum (FWHM) of 25 nm and large Stokes shift of 182 nm. Then, these oil phase CdSe/CdS QRs (maintaining the high absolute QY) dissolved in the mixed solution of chloroform, dimethylformamide (DMF) and polymethyl methacrylate (PMMA) were used to electrospin aligned QR-containing PMMA nanofibers. Collecting these fibers by a roller, we were able to make large-scale active luminance film with enhanced polarization with these PMMA nanofibers aligned. For a 5 cm2 size film, the polarization was measured to be 0.45. The film was further inserted into a mobile LCD for test and the brightness of LCD was enhanced by 18.4% with the film. Our results indicate that our aligned film is a very promising backlight solution for highly efficient and wide color gamut LCD displays.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP394.1;TH691.9

DOI:10.3788/yjyxs20183304.0261

所属栏目:材料与器件

基金项目:国家重点研发计划战略性先进电子材料重点专项(No.2016YFB0401702);国家自然科学基金(No.61674074;No.61405089);广东省自然科学杰出青年基金(No.2017B030306010);深圳市孔雀团队项目(No.KQTD2016030111203005);深圳市基础研究项目(No.JCYJ20160301113356947;No.JCYJ20160301113537474);中国博士后基金(No.2017M610484;No.2017M612497);南方科技大学启动基金。

收稿日期:2017-11-20

修改稿日期:2017-12-18

网络出版日期:--

作者单位    点击查看

秦 静:南方科技大学 电子与电气工程系,广东 深圳 518055
温佐良:南方科技大学 电子与电气工程系,广东 深圳 518055
李 尚:南方科技大学 电子与电气工程系,广东 深圳 518055
周子明:南方科技大学 电子与电气工程系,广东 深圳 518055
郝俊杰:南方科技大学 电子与电气工程系,广东 深圳 518055
吴 丹:南方科技大学 电子与电气工程系,广东 深圳 518055
刘皓宸:南方科技大学 电子与电气工程系,广东 深圳 518055
陈 威:南方科技大学 电子与电气工程系,广东 深圳 518055
徐 冰:南方科技大学 电子与电气工程系,广东 深圳 518055
王 丹:南方科技大学 电子与电气工程系,广东 深圳 518055
陈 锐:南方科技大学 电子与电气工程系,广东 深圳 518055
王 恺:南方科技大学 电子与电气工程系,广东 深圳 518055
孙小卫:南方科技大学 电子与电气工程系,广东 深圳 518055

联系人作者:秦静(qinj@sustc.edu.cn)

备注:秦静(1988-),女,河南南阳人,硕士,实验员,2011年于河南大学获得学士学位,2014年于深圳大学获得硕士学位,同年于中国科学院深圳先进技术研究院获得联合培养证书,现为南方科技大学工学院研实验员,主要从事半导体纳米晶材料及其光电器件的研究。

【1】DEKA S, QUARTA A, LIPO M G, et al. CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes [J]. Journal of the American Chemical Society, 2009, 131(8): 2948-2958.

【2】FU A H, GU W W, BOUSSERT B, et al. Semiconductor quantum rods as single molecule fluorescent biological labels [J]. Nano Letters, 2007, 7(1): 179-182.

【3】YONG K T, ROY I, PUDAVAR H E, et al. Multiplex imaging of pancreatic cancer cells by using functionalized quantum rods [J]. Advanced Materials, 2008, 20(8): 1412-1417.

【4】YONG K T, QIAN J, ROY I, et al. Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells [J]. Nano Letters, 2007, 7(3): 761-765.

【5】BARNHAM K, MARQUES J L, HASSARD J, et al. Quantum-dot concentrator and thermodynamic model for the global redshift [J]. Applied Physics Letters, 2000, 76(9): 1197-1199.

【6】SALANT A, SHALOM M, TACHAN Z, et al. Quantum rod-sensitized solar cell: nanocrystal shape effect on the photovoltaic properties [J]. Nano Letters, 2012, 12(4): 2095-2100.

【7】HIKMET R A M, CHIN P T K, TALAPIN D V, et al. Polarized-light-emitting quantum-rod diodes [J]. Advanced Materials, 2005, 17(11): 1436-1439.

【8】耿卫东,郭嘉,唐静,等.全无机胶体量子点显示技术[J].液晶与显示,2014,29(4):479-484.
GENG W D, GUO J, TANG J, et al. All-inorganic colloidal quantum dots display technology [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(4): 479-484. (in Chinese)

【9】KIM H M, KANG T W, CHUNG K S. Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods [J]. Advanced Materials, 2003, 15(7/8): 567-569.

【10】HU J T, LI L S, YANG W D, et al. Linearly polarized emission from colloidal semiconductor quantum rods [J]. Science, 2001, 292(5524): 2060-2063.

【11】SITT A, HADAR I, BANIN U. Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods [J]. Nano Today, 2013, 8(5): 494-513.

【12】SWAFFORD L A, WEIGAND L A, BOWERS II M J, et al. Homogeneously alloyed CdSxSe1-x nanocrystals: synthesis, characterization, and composition/size-dependent band gap [J]. Journal of the American Chemical Society, 2006, 128(37): 12299-12306.

【13】PENG X G, MANNA L, YANG W D, et al. Shape control of CdSe nanocrystals [J]. Nature, 2000, 404(6773): 59-61.

【14】PENG Z A, PENG X D. Mechanisms of the shape evolution of CdSe nanocrystals [J]. Journal of the American Chemical Society, 2001, 123(7): 1389-1395.

【15】SITT A, SALANT A, MENAGEN G, et al. Highly emissive nano rod-in-rod heterostructures with strong linear polarization [J]. Nano Letters, 2011, 11(5): 2054-2060.

【16】HALIVNI S, SITT A, HADAR I, et al. Effect of nanoparticle dimensionality on fluorescence resonance energy transfer in nanoparticle-dye conjugated systems [J]. ACS Nano, 2012, 6(3): 2758-2765.

【17】DOANE T L, ALAM R, MAYE M M. Functionalization of quantum rods with oligonucleotides for programmable assembly with DNA origami [J]. Nanoscale, 2015, 7(7): 2883-2888.

【18】王东民,肖景林.量子棒中强耦合杂质束缚极化子的振动频率[J].发光学报,2011,32(1):27-32.
WANG D M, XIAO J L. Vibrational frequency of strong-coupling impurity bound polaron in quantum rods [J]. Chinese Journal of Luminescence, 2011, 32(1): 27-32. (in Chinese)

【19】REN C L, HAO J J, CHEN H L, et al. Prepare core–multishell CdSe/ZnS nanocrystals with pure color and controlled emission by tri-n-octylphosphine-assisted method [J]. Applied Surface Science, 2015, 353: 480-488.

【20】HAO J J, ZHOU J, ZHANG C Y. A tri-n-octylphosphine-assisted successive ionic layer adsorption and reaction method to synthesize multilayered core-shell CdSe-ZnS quantum dots with extremely high quantum yield [J]. Chemical Communications, 2013, 49(56): 6346-6348.

【21】NAN W N, NIU Y, QIN H Y, et al. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties [J]. Journal of the American Chemical Society, 2012, 134(48): 19685-19693.

【22】CARBONE L, NOBILE C, DE GIORGI M, et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach [J]. Nano Letters, 2007, 7(10): 2942-2950.

【23】ZHANG C L, LV K P, CONG H P, et al. Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free-standing SERS substrates by electrospinning [J]. Small, 2012, 8(5): 648-653.

【24】LEE C H, TIAN L M, ABBAS A, et al. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates [J]. Nanotechnology, 2011, 22(27): 275311.

【25】BASHOUTI M, SALALHA DR W, BRUMER M, et al. Alignment of colloidal CdS nanowires embedded in polymer nanofibers by electrospinning [J]. Chemphyschem, 2006, 7(1): 102-106.

【26】MURPHY C J, ORENDORFF C J. Alignment of gold nanorods in polymer composites and on polymer surfaces [J]. Advanced Materials, 2005, 17(18): 2173-2177.

【27】牛萍娟,薛卫芳,宁平凡,等.基于静电纺丝工艺的LED远程荧光片制备技术[J].发光学报,2016,37(5):567-572.
NIUP J, XUE W F, NING P F, et al. Fabrication technology of led remote fluorescent sheets based on electrostatic spinning process [J]. Chinese Journal of Luminescence, 2016, 37(5): 567-572. (in Chinese)

【28】AUBERT T, PALANGETIC L, MOHAMMADIMASOUDI M, et al. Large-scale and electroswitchable polarized emission from semiconductor nanorods aligned in polymeric nanofibers [J]. SID Symposium Digest of Technical Papers, 2015, 46(S1): 12.

【29】QIN J, HAO J J, CHEN W, et al. A Rapid, Highly emissive procedure synthesize of giant pure red coreshell quantum rods by using modified tributylphosphine-assisted method [J]. SID Symposium Digest of Technical Papers, 2016, 47(1): 428-431.

【30】FONTES G N, NEVES B R A. Effects of substrate polarity and chain length on conformational and thermal properties of phosphonic acid self-assembled bilayers [J]. Langmuir, 2005, 21(24): 11113-11118.

【31】BONDAREV S L, KNYUKSHTO V N, TURBAN A A, et al. Effect of the polymethine chain length, the polarity and temperature of the medium on the spectroscopic properties of merocyanine dyes [J]. Journal of Applied Spectroscopy, 2006, 73(1): 25-34.

【32】TALAPIND V, KOEPPE R, GTZINGER S, et al. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality [J]. Nano Letters, 2003, 3(12): 1677-1681.

【33】LI J J, WANG Y A, GUO W Z, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction [J]. Journal of the American Chemical Society, 2003, 125(41): 12567-12575.

【34】COROPCEANU I, ROSSINELLI A, CARAM J R, et al. Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer [J]. ACS Nano, 2016, 10(3): 3295-3301.

【35】PENG X G. Band gap and composition engineering on a nanocrystal (BCEN) in solution [J]. Accounts of Chemical Research, 2010, 43(11): 1387-1395.

【36】JIA G H, SITT A, HITIN G B, et al. Couples of colloidal semiconductor nanorods formed by self-limited assembly [J]. Nature Materials, 2014, 13(3): 301-307.

【37】LI J J, TSAY J M, MICHALET X, et al. Wavefunction engineering: from quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy [J]. Chemical Physics, 2005, 318(1/2): 82-90.

【38】TALAPIND V, NELSON J H, SHEVCHENKO E V, et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies [J]. Nano Letters, 2007, 7(10): 2951-2959.

【39】MAYNADI J, SALANT A, FALQUI A, et al. Cobalt growth on the tips of CdSe nanorods [J]. Angewandte Chemie International Edition, 2009, 48(10): 1814-1817.

【40】TEO W E, RAMAKRISHNA S. A review on electrospinning design and nanofibre assemblies [J]. Nanotechnology, 2006, 17(14): R89-R106.

【41】QIN J, WEN Z L, LI S, et al. Large-scale Luminance enhancement film with quantum rods aligned in polymeric nanofibers for high efficiency wide color gamut LED display [J]. SID Symposium Digest of Technical Papers, 2016, 47(1): 854-857.

引用该论文

QIN Jing,WEN Zuo-liang,LI Shang,ZHOU Zi-ming,HAO Jun-jie,WU Dan,LIU Hao-chen,CHEN Wei,XU Bing,WANG Dan,CHEN Rui,WANG Kai,SUN Xiao-wei. Large-scale active luminance film with enhanced polarization made of aligned quantum-rod-containing polymeric nanofibers for highly efficient and wide color gamut LCD displays[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(4): 261-270

秦 静,温佐良,李 尚,周子明,郝俊杰,吴 丹,刘皓宸,陈 威,徐 冰,王 丹,陈 锐,王 恺,孙小卫. 基于量子棒纳米纤维大面积定向排列的偏振增亮膜及其在宽色域显示中的应用[J]. 液晶与显示, 2018, 33(4): 261-270

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF