首页 > 论文 > 液晶与显示 > 33卷 > 4期(pp:317-325)

基于深度卷积神经网络的输电线路可见光图像目标检测

Object detection of transmission line visual images based on deep convolutional neural network

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了检测输电线路可见光图像中的塔材、玻璃绝缘子和复合绝缘子,本文采用了一种基于深度卷积神经网络的技术。通过有人直升机搭载高清相机拍摄19条不同的输电线路近600张图片,对图片中的背景、塔材、玻璃绝缘子和复合绝缘子目标进行人工标注及分块,采用数据扩展生成包含15万个样本的输电线路图像库。构造5层深度卷积神经网络,首先用Cifar-100数据集对网络进行预训练,然后用输电线路图像库进行网络调优。本文方法在检测真阳率为90%时,假阳率低于10%,明显优于传统方法,可用于输电线路可见光图像中的塔材、玻璃绝缘子和复合绝缘子检测,检测结果可用于诊断参考或进一步的目标状态分析。可对输电线路可见光图像中的塔材和绝缘子目标进行检测,并可扩展到其它类型目标的检测。

Abstract

A deep convolutional neural network based method is adopted to detect objects such as tower, glass insulator and composite insulator in visible images of transmission lines. About 600 visible images of 19 different transmission lines are captured by manned helicopter with high-definition camera. All of the images are then annotated manually and segmented into blocks with 4 different labels: background, tower, glass insulator and composite insulator. These blocks are then augmented to around 150 000 training samples which comprise the transmission line image dataset. A five-layer deep convolutional neural network is designed and pre-trained by using Cifar-100 dataset, the trained network is then fine-tuned by using transmission line image dataset. The experimental results show that when detection true positive rate is 90%, the false alarm rate is less than 10%, which is obviously superior to the traditional methods. It can be used for the detection of tower, glass insulator and composite insulator in visible images of transmission lines. The detection result can be used as reference for diagnosis or state analysis of transmission lines. This method can be used to detect tower and insulator in visible images of transmission lines, and can be extended to detect other typical objects.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751.1

DOI:10.3788/yjyxs20183304.0317

所属栏目:图像处理

收稿日期:2017-12-04

修改稿日期:2017-12-31

网络出版日期:--

作者单位    点击查看

周筑博:天津航天中为数据系统科技有限公司(天津市智能遥感信息处理技术企业重点实验室),天津 300301
高 佼:济南汤尼机器人科技有限公司,山东 济南 250101
张 巍:南方电网科学研究院有限责任公司,广东 广州 510080
王晓婧:天津航天中为数据系统科技有限公司(天津市智能遥感信息处理技术企业重点实验室),天津 300301
张 静:天津航天中为数据系统科技有限公司(天津市智能遥感信息处理技术企业重点实验室),天津 300301

联系人作者:周筑博(zhouzhubo90@163.com)

备注:周筑博(1990-),男,山东潍坊人,硕士,工程师,主要从事机器学习及电网应用方面的工作。

【1】ZHAO Z B, LIU N, YUAN Y P. The recognition and localization of insulators based on SIFT and RANSAC [C]//Proceedings of the 3rd International Conference on Multimedia Technology (ICMT-13). Atlantis Press, 2013: 699-706.

【2】李卫国,叶高生,黄锋,等.基于改进MPEG-7纹理特征的绝缘子图像识别[J].高压电器,2010,46(10):65-68.
LI W G, YE G S, HUANG F, et al. Recognition of insulator based on developed MPEG-7 texture feature [J]. High Voltage Apparatus, 2010, 46(10): 65-68. (in Chinese)

【3】韩军,张晶晶,王滨海.基于感知组织的输电线路结构识别方法[J].红外与激光工程,2013,42(12):3458-3463.
HANJ, ZHANG J J, WANG B H. Method on recognizing the structure of transmission line based on perceptual organization [J]. Infrared and Laser Engineering, 2013, 42(12): 3458-3463. (in Chinese)

【4】赵俊梅,张利平.绝缘子图像的多种特征提取技术的研究[J].电测与仪表,2013,50(12):37-41.
ZHAO J M, ZHANG L P. Research on various feature extraction technology of insulator image [J]. Electrical Measurement & Instrumentation, 2013, 50(12): 37-41. (in Chinese)

【5】SZEGEDY C, TOSHEV A, ERHAN D. Deep Neural Networks for object detection [C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc., 2013: 2553-2561.

【6】KRIZHEVSKY A. Learning multiple layers of features from tiny images [J]. 2009.

【7】SUN Y, WANG X G, TANG X O. Deep learning face representation from predicting 10,000 classes [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 1891-1898.

【8】WANG T, WU D J, COATES A, et al. End-to-end text recognition with convolutional neural networks [C]//Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan: IEEE, 2012: 3304-3308.

【9】黄文博,王珂,燕杨.彩色视网膜眼底图像血管自动检测方法[J].光学 精密工程,2017,25(5):1378-1386.
HUANG W B, WANG K, YAN Y. Automatic detection method of blood vessel for color retina fundus images [J]. Optics and Precision Engineering, 2017, 25(5): 1378-1386. (in Chinese)

【10】刘智,黄江涛,冯欣.构建多尺度深度卷积神经网络行为识别模型[J].光学 精密工程,2017,25(3):799-805.
LIU Z, HUANG J T, FENG X. Action recognition model construction based on multi-scale deep convolution neural network [J]. Optics and Precision Engineering, 2017, 25(3): 799-805. (in Chinese)

【11】LECUN Y, HUANG F J, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2004, 2: II-97-II-104.

【12】LI F F, FERGUS R, PERONA P. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories [J]. Computer vision and Image understanding, 2007, 106(1): 59-70.

【13】DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 248-255.

【14】RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: A database and web-based tool for image annotation [J]. International Journal of Computer Vision, 2008, 77(1/3): 157-173.

【15】LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition [J]. Neural Computation, 1989, 1(4): 541-551.

【16】KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: ACM, 2012: 1097-1105.

【17】JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional architecture for fast feature embedding [C]//Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, Florida: ACM, 2014: 675-678.

【18】FAN R E, CHANG K W, HSIEH C J, et al. LIBLINEAR: A library for large linear classification [J]. Journal of Machine Learning Research, 2008, 9(8): 1871-1874.

【19】LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

【20】DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005: 886-893.

引用该论文

ZHOU Zhu-bo,GAO Jiao,ZHANG Wei,WANG Xiao-jing,ZHANG Jing. Object detection of transmission line visual images based on deep convolutional neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(4): 317-325

周筑博,高 佼,张 巍,王晓婧,张 静. 基于深度卷积神经网络的输电线路可见光图像目标检测[J]. 液晶与显示, 2018, 33(4): 317-325

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF