首页 > 论文 > 红外与激光工程 > 47卷 > 8期(pp:803004--1)

基于氟碲酸盐光纤的高功率中红外超连续光源(特邀)

High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高功率全光纤中红外超连续光源在基础科学研究、环境、医疗以及国防安全等领域有着重要应用。目前用于研制上述光源所用的非线性介质为氟化物玻璃光纤。但是氟化物玻璃光纤的损伤阈值低、化学稳性差, 这在一定程度上影响了氟化物玻璃光纤在实用化高功率中红外光源研制中的应用。为了进一步提升中红外超连续光源的性能和研制实用化高功率中红外超连续光源, 最近制备出了一种具有较好热稳定性和化学稳定性的氟碲酸盐玻璃(TeO2-BaF2-Y2O3, TBY), 并利用其作为基质材料, 设计制备出了一系列氟碲酸盐玻璃光纤。利用这些光纤作为非线性介质, 研制出了光谱范围覆盖1.4~4 ?滋m的高相干超连续光源, 光谱范围覆盖0.4~5.14 ?滋m的宽带超连续光源和平均功率大于10 W、光谱范围覆盖947~3 934 nm的超连续光源。

Abstract

High power all-fiber mid-infrared(MIR) supercontinuum(SC) light sources have attracted much attention for their wide applications in fundamental research, environments, medicine, and national defense security. Currently, such SC light sources are mainly based on fluoride glass fibers. While the relative low damage threshold and poor chemical durability of the fluoride glass fibers influenced their applications in practical high power MIR SC light sources. For further improving the performances of the MIR SC light sources and developing practical high power MIR SC light source, a fluorotellurite glass(TeO2-BaF2-Y2O3, TBY) with good thermal and chemical stabilities was developed, and fluorotellurite glass fibers was fabricated based on it. By using the fluorotellurite glass fibers as the nonlinear media, coherent SC generation from 1.4-4 ?滋m and broadband SC generation from 0.4-5.14 ?滋m were obtained in our experiments. Moreover, SC light source with an average power of >10 W was also obtained, and the spectral range covered 947-3 934 nm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN212

DOI:10.3788/irla201847.0803004

所属栏目:特约专栏-"超快光纤激光技术专栏(一)"

基金项目:国家自然科学基金(61527823, 61378004, 61605058, 11474132); 吉林省重点科技研发项目(20180201120GX);吉林省重大科技招标专项(20170203012GX); 装备预研教育部联合基金(6141A02022413);吉林省优秀青年人才基金(20180520188JH)

收稿日期:2018-04-05

修改稿日期:2018-05-03

网络出版日期:--

作者单位    点击查看

贾志旭:吉林大学 电子科学与工程学院 集成光电子学国家重点实验室, 吉林 长春 130012
姚传飞:吉林大学 电子科学与工程学院 集成光电子学国家重点实验室, 吉林 长春 130012
李真睿:吉林大学 电子科学与工程学院 集成光电子学国家重点实验室, 吉林 长春 130012
贾世杰:吉林大学 电子科学与工程学院 集成光电子学国家重点实验室, 吉林 长春 130012
赵志鹏:吉林大学 电子科学与工程学院 集成光电子学国家重点实验室, 吉林 长春 130012
秦伟平:吉林大学 电子科学与工程学院 集成光电子学国家重点实验室, 吉林 长春 130012
秦冠仕:吉林大学 电子科学与工程学院 集成光电子学国家重点实验室, 吉林 长春 130012

联系人作者:贾志旭(jiazx@jlu.edu.cn)

备注:贾志旭(1985-), 男, 讲师, 博士, 主要从事特种玻璃光纤及器件方面的研究。

【1】Alfano R. The Supercontinuum Laser Source [M]. New York: Springer, 2006.

【2】Dudley J, Taylor R. Supercontinuum Generation in Optical Fibers [M]. New York: Cambridge University Press, 2010.

【3】Wei Zhiyi. The 2005 Nobel prize in physics and optical frequency comb techniques [J]. Physics, 2006, 35(3): 213-217. (in Chinese)
魏志义. 2005年诺贝尔物理学奖与光学频率梳 [J]. 物理, 2006, 35(3): 213-217.

【4】Hartl I, Li X D, Chudoba C, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Optics Letters, 2001, 26(9): 608-610.

【5】Wildanger D, Rittweger E, Kastrup L, et al. STED microscopy with a supercontinuum laser source[J]. Optics Express, 2008, 16(13): 9614-9621.

【6】Brown D M, Shi K, Liu Z, et al. Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents [J]. Optics Express, 2008, 16(12): 8457-8471.

【7】Wallace J. IR supercontinuum laser helps defend helicopters [N]. Laser Focus World, 2010, Sept 3.

【8】Qian Liejia. Development and integration of wide tunable mid infrared femtosecond and narrow band long pulse laser devices [J]. Infrared and Laser Engineering, 2006, 35(z3): 43. (in Chinese)
钱列加. 宽调谐中红外飞秒及窄带长脉冲激光器件的研制和集成 [J]. 红外与激光工程, 2006, 35(z3): 43.

【9】Deng Ying, Zhu Qihua, Zeng Xiaoming, et al. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser & Optoelectronics Progress, 2006, 43(8): 21-26. (in Chinese)
邓颖, 朱启华, 曾小明, 等. 超短中红外激光脉冲的产生及其发展状况 [J]. 激光与光电子进展, 2006, 43(8): 21-26.

【10】Chen K, Alam S U, Price J H V, et al. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power [J]. Optics Express, 2010, 18(6): 5426-5432.

【11】Sanghera J S, Aggarwal I D, Busse L E, et al. Chalcogenide optical fibers target mid-IR applications [J]. Laser Focus World, 2005, 41(4): 83-87.

【12】Harbold J M, Ilday F O, Wise F W, et al. Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching[J]. IEEE Photonics Technology Letters, 2002, 14(6): 822-824.

【13】Slusher R E, Lenz G, Hodelin J, et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers [J]. Journal of the Optical Society of America B-Optical Physics, 2004, 21(6): 1146-1155.

【14】Feng X, Mairaj A K, Hewak D W, et al. Nonsilica glasses for holey fibers[J]. Journal of Lightwave Technology, 2005, 23(6): 2046-2054.

【15】Petersen C R, M?准ller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre [J]. Nature Photonics, 2014, 8(11): 830-834.

【16】Cheng T L, Nagasaka K, Tuan T H, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9): 2117-2120.

【17】Zhao Z M, Wang X S, Dai S X, et al. 1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber [J]. Optics Letters, 2016, 41(22): 5222-5225.

【18】Zhao Z M, Wu B, Wang X S, et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber [J]. Laser & Photonics Reviews, 2017, 11(2): 1700005.

【19】Qin G S, Yan X, Kito C, et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 ?滋m in a fluoride fiber[J]. Applied Physics Letters, 2009, 95(16): 584.

【20】Xia C N, Xu Z, Islam M N, et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 ?滋m with direct pulse pattern modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 422-434.

【21】Yang W, Zhang B, Xue G, et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 ?滋m MOPA system [J]. Optics Letters, 2014, 39(7): 1849-1852.

【22】Liu K, Liu J, Shi H X, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power [J]. Optics Express, 2014, 22(20): 24384-24391.

【23】Liu K, Liu J, Shi H X, et al. 24.3 W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier [C]//Advanced Solid State Lasers, 2014, AM3A.6.

【24】Zheng Z J, Ouyang D Q, Zhao J Q, et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber [J]. Photonics Research, 2016, 4(4): 135-139.

【25】Yin K, Zhang B, Yang L Y, et al. 15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 ?滋m [J]. Optics Letters, 2017, 42(12): 2334-2337.

【26】Poulain M, Poulain M, Lucas J. Verres fluores au tetrafluorure de zirconium proprietes optiques d''un verre dope au Nd3+ [J]. Materials Research Bulletin, 1975, 10(4): 243-246.

【27】Zhu X, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in OptoElectronics, 2010(1687-563X): 149-154.

【28】Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 1994, 3(3): 187-203.

【29】Ghosh G. Sellmeier coefficients and chromatic dispersions for some tellurite glasses [J]. Journal of the American Ceramic Society, 1995, 78(10): 2828-2830.

【30】Domachuk P, Wolchover N A, Cronin-Golomb M, et al. Over 4 000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs [J]. Optics Express, 2008, 16(10): 7161-7168.

【31】Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm [C]//SPIE 2013, 8898: 889808.

【32】Shi H X, Feng X, Tan F Z, et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optical Materials Express, 2016, 6(12): 3967-3976.

【33】Yang L, Zhang B, Yin K, et al. 0.6-3.2 μm supercontinuum generation in a stepindex germania-core fiber using a 4.4 kW peak power pump laser [J]. Optics Express, 2016, 13(24): 12600-12606.

【34】Yin K, Zhang B, Yao J, et al. 1.9-3.6 μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio[J]. Optics Letters, 2016, 41(21): 5067-5070.

【35】Yin K, Zhang B, Yang L, et al. 30 W monolithic 2-3 μm supercontinuum laser[J]. Photonics Research, 2018, 6(2): 123-126.

【36】O′donnell M D, Miller C A, Furniss D, et al. Fluorotellurite glasses with improved mid-infrared transmission [J]. Journal of Non-Crystalline Solids, 2003, 331(1-3): 48-57.

【37】Liao G H, Chen Q P, Xing J J, et al. Preparation and characterization of new fluorotellurite glasses for photonics application [J]. Journal of Non-Crystalline Solids, 2009, 355(7): 447-452.

【38】O′donnell M D, Richardson K, Stolen R, et al. Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization[J]. Journal of the American Ceramic Society, 2007, 90(5): 1448-1457.

【39】Wang R, Meng X, Yin F, et al. Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications [J]. Optical Material Express, 2013, 3(8): 1127-1136.

【40】de Sousa D F, Zonetti L F C, Bell M J V, et al. On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses[J]. Applied Physics Letters, 1999, 74(7): 908-910.

【41】Yao C, He C, Jia Z, et al. Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing[J]. Optics Letters, 2015, 40(20): 4695-4698.

【42】Wang F, Wang K, Yao C, et al. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation[J]. Optics Letters, 2016, 41(3): 634-637.

【43】Bei J F, Foo H T C, Qian G J, et al. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water[J]. Optical Materials Express, 2014, 4(6): 1213-1226.

【44】Dudley J M, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Optics Letters, 2002, 27(13): 1180-1182.

【45】Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber [J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184.

【46】Savelii I, Desevedavy F, Jules J C, et al. Management of OH absorption in tellurite optical fibers and related supercontinuum generation[J]. Optical Materials, 2013, 35(8): 1595-1599.

【47】Jia Z, Yao C, Jia S, et al. Supercontinuum generation covering the entire transmission window of 0.4-5 μm in a tapered ultra-high NA all-solid fluorotellurite fiber [J]. Laser Physics Letters, 2018, 15: 025102.

【48】Jia Z, Yao C, Jia S, et al. 4.5 W supercontinuum generation from 1 017 to 3 438 nm in an all-solid fluorotellurite fiber [J]. Applied Physics Letters, 2017, 110: 261106.

【49】Corwin K L, Newbury N R, Dudley J M, et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber [J]. Applied Physics B-Lasers and Optics, 2003, 77(2-3): 269-277.

【50】Corwin K L, Newbury N R, Dudley J M, et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber [J]. Physical Review Letters, 2003, 90(11): 113904.

【51】Klimczak M, Siwicki B, Skibinski P, et al. Coherent supercontinuum generation up to 2.3 ?滋m in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion [J]. Optics Express, 2014, 22(15): 18824-18832.

【52】Li N, Wang F, Yao C, et al. Coherent supercontinuum generation from 1.4 to 4 ?滋m in a tapered fluorotellurite microstructured fiber pumped by a 1 980 nm femtosecond fiber laser [J]. Applied Physics Letters, 2017, 110: 061102.

【53】Zhan H, Shi T F, Zhang A D, et al. Nonlinear characterization on mid-infrared fluorotellurite glass fiber[J]. Materials Letters, 2014, 120: 174-176.

【54】Chen Z, Taylor A J, Efimov A. Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper [J]. Optics Express, 2009, 17(7): 5852-5860.

【55】Yao C, Jia Z, Li Z, et al. 10-W-level mid-infrared supercontinuum laser source using fluorotellurite fiber [J]. (Submitted).

引用该论文

Jia Zhixu,Yao Chuanfei,Li Zhenrui,Jia Shijie,Zhao Zhipeng,Qin Weiping,Qin Guanshi. High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 0803004

贾志旭,姚传飞,李真睿,贾世杰,赵志鹏,秦伟平,秦冠仕. 基于氟碲酸盐光纤的高功率中红外超连续光源(特邀)[J]. 红外与激光工程, 2018, 47(8): 0803004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF