首页 > 论文 > 红外与激光工程 > 47卷 > 8期(pp:826005--1)

基于中心矩特征和GA-BP神经网络的雷达目标识别

Radar target recognition based on central moment feature and GA-BP neural network

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在雷达目标识别中, 利用核主分量分析(KPCA)方法来进行目标特征提取, 忽略了高分辨率距离像(HRRP)的本身特性。提取一种平移不变特征-中心矩作为特征向量, 采用KPCA进行特征降维; 由于BP神经网络易陷入局部极小, 采用遗传算法(GA)对BP网络节点权值和阀值进行优化选择。基于雷达实测数据的实验结果表明: 平移不变的KPCA特征提取方法实现了平移不变和降维的结合, 同时, 利用GA优化BP神经网络提高了分类器稳定性改善易陷入局部最小的缺陷, 提高了雷达目标识别的性能。

Abstract

When using the method of kernel principal component analysis(KPCA) to extract feature of target in radar target recognition, the HRRP characteristic is ignored. A translation invariant features-central moments was extracted as feature vector, KPCA was used to reduce the dimensionality; The BP neural network was easy to fall into local minimum, the genetic algorithm(GA) was used to optimize the BP network node weights and threshold. The experimental results based on the measured radar data show that the translation invariant KPCA feature extraction method achieve the combination of translation invariant and descending dimension, and the BP neural network optimized by GA improves the stability of classifier and improves the defect of falling into local minimum easily.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN959.1

DOI:10.3788/irla201847.0826005

所属栏目:信息获取与辨识

基金项目:国家自然科学基金(61571364); 陕西省自然科学基金(2017JM6037); 陕西省教育厅专项研究计划(17JK0397)

收稿日期:2018-03-09

修改稿日期:2018-04-12

网络出版日期:--

作者单位    点击查看

赵东波:西安航空学院 电子工程学院, 陕西 西安 710077西北工业大学 电子信息学院, 陕西 西安 710129
李 辉:西北工业大学 电子信息学院, 陕西 西安 710129

联系人作者:赵东波(alien_dffy@163.com)

备注:赵东波(1979-), 男, 讲师, 硕士, 主要从事模式识别、信号处理方面的研究。

【1】Xu Bin, Chen Bohai, Liu Hongwei, et al. Based on the recurrent neural network model, radar high resolution distance image target recognition [J]. Journal of Electronics and Information, 2016, 38(12): 2988-2995. (in Chinese)

【2】Wu Zhanjun, Niu Min, Xu Bing, et al. Research on recognition method based on spectral regression feature reduction and backward propagation neural network[J]. Journal of Electronic and Information, 2016, 38(4): 978-984. (in Chinese)

【3】Li Haipeng, Li Jingjiao, Yan Aiyun, et al. The parallel realization of genetic neural network in face recognition[J]. Computer Science, 2015, 42(6A): 168-174. (in Chinese)

【4】Yang Xufeng, Lin Wei, Yan Weidong, et al. SAR image target recognition using thermonuclear characteristics [J]. Infrared and Laser Engineering, 2014, 43(11): 3794-3801. (in Chinese)

【5】Li Hui, Jin Baolong, Zhai Haitian. High resolution radar signal translation invariant KPCA feature extraction algorithm [J]. Computer Simulation, 2012, 29(1): 9-12. (in Chinese)

【6】Sun Shaoyuan, Li Linna, Zhao Haitao. Depth estimation of monocular vehicle infrared images using KPCA and BP neural networks [J]. Infrared and Laser Engineering, 2013, 42(9): 2348-2352. (in Chinese)

【7】Yuan Pu, Mao Jianlin, Xiang Fenghong, et al. Improved network fault diagnosis based on genetic optimization BP neural network [J]. Power System and Automation Journal, 2017, 29(1): 118-122. (in Chinese)

【8】Liu Yanju, Kou Guohao, Song Jianhui. Air target recognition technology based on RBF neural network[J]. Fire and Command Control, 2015, 40(8): 9-13. (in Chinese)

【9】Cheng Liang, Zhu Li. Millimeter wave radiometer target recognition based on PCA optimized radial basis function neural network [J]. Acta Microwave Sinica, 2015, 10: 225-229. (in Chinese)

【10】Yang Wenxiu, Fu Wenxing, Zhou Zhiwei, et al. Lidar rapid target recognition based on projection dimension reduction [J]. Infrared and Laser Engineering, 2014, 43(S): 0001-0007. (in Chinese)

【11】Qin Guohua, Xie Wenbin, Wang Huamin. Tool wear detection and control based on neural network and genetic algorithm [J]. Optics and Precision Engineering, 2015, 23(5): 1314-1321. (in Chinese)

【12】Nie Haitao, Long Kehui, Ma Jun, et al. Fast object recognition under multiple varying background using improved SIFT method[J]. Optics and Precision Engineering, 2015, 23(8): 2349-2356. (in Chinese)

【13】Xiao Yongsheng, Huang Lizhen, Zhou Jianjiang. RATR of adaptive angular-sector segmentation based on grey incidence analysis model[J]. Grey Systems: Theory and Application, 2017, 7(1): 71-79.

【14】Cao Wei, Zhou Hui, Zhou Zhimin, et al. An approach for high resolution radar target recognition based on BP neural network[C]//International Conference on Intelligent Computing, ICIC 2011: Advanced Intelligent Computing, 2011: 33-39.

【15】Zhou Daiying. Radar target HRRP recognition based on reconstructive and discriminative dictionary learning[J]. Signal Processing, 2016, 126(11): 52-64.

【16】Huang Xiayuan, Nie Xiangli, Hong Weiwua, et al. SAR target configuration recognition based on the biologically inspired model[J]. Neurocomputing, 2017, 234(4): 185-191.

引用该论文

Zhao Dongbo,Li Hui. Radar target recognition based on central moment feature and GA-BP neural network[J]. Infrared and Laser Engineering, 2018, 47(8): 0826005

赵东波,李 辉. 基于中心矩特征和GA-BP神经网络的雷达目标识别[J]. 红外与激光工程, 2018, 47(8): 0826005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF