首页 > 论文 > 红外与激光工程 > 47卷 > 7期(pp:722002--1)

光纤法珀压力传感系统设计与风洞初步实验

Design and preliminary experiment of optical fiber F-P pressure sensing system working in wind tunnel

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对航空领域对大气压力的测量需求, 基于光纤法珀传感和低相干干涉技术, 搭建了光纤法珀多通道压力传感系统。介绍了系统解调算法及工作原理, 对光纤法珀压力传感器的标定和温度补偿方法进行理论分析, 将非恒温条件下的传感器拟合误差降低至0.134% F.S.。在风洞环境中, 在侧滑角-4°~4°变化范围内, 对飞机实体模型的三个监测点进行压力测量实验, 并将压力测量结果与Ansys-Fluent软件模拟仿真结果做对比。结果显示, 光纤法珀压力传感系统与模拟仿真数据变化趋势相同, 全量程误差为0.38% F.S., 证明此系统能够提供可靠的压力数据, 真实反映飞机模型被监测位置在风洞中的受力情况。

Abstract

In order to meet the requirement of atmospheric pressure measurement in the aviation field, based on the principle of the optical fiber Fabry-Perot (F-P) sensing and low coherence interference, an optical fiber F-P multi-channel pressure sensing system was proposed. First of all, the demodulation algorithm and basic principle were introduced, the calibration method and temperature compensation of the optical fiber F-P pressure sensor were analyzed in theory. The fitting error of the sensor under non-constant temperature condition was reduced to 0.134% F.S.. Then, in the wind tunnel environment within -4°-4° sideslip angle range, the pressure measurement experiment was carried out on three monitoring points of the aircraft model. The results were compared with the simulation results using Ansys-Fluent software. In conclusion, the results show that the system using the optical fiber F-P pressure sensor and the Ansys-Fluent numerical simulation have the same trend of demodulation results, with the full range error of 0.38% F.S.. The experiments confirm that the system can provide reliable pressure data accurately and reflect the pressure of the aircraft model′s monitoring points in the wind tunnel.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN29

DOI:10.3788/irla201847.0722002

所属栏目:光通信与光传感

基金项目:国家重大科学仪器设备开发专项(2013YQ030915); 国家自然科学基金(61675152; 61505139; 61227011; 61378043; 61475114); 国家973计划(2010CB327802); 天津市自然科学基金(16JCQNJC02000)

收稿日期:2018-02-10

修改稿日期:2018-03-20

网络出版日期:--

作者单位    点击查看

刘 畅:天津大学 精密仪器与光电子工程学院 天津大学光电信息技术教育部重点实验室 天津大学光纤传感研究所, 天津 300072
王 双:天津大学 精密仪器与光电子工程学院 天津大学光电信息技术教育部重点实验室 天津大学光纤传感研究所, 天津 300072
梁应剑:中航工业成都凯天电子股份有限公司, 四川 成都 610073
江俊峰:天津大学 精密仪器与光电子工程学院 天津大学光电信息技术教育部重点实验室 天津大学光纤传感研究所, 天津 300072
梅运桥:中航工业成都凯天电子股份有限公司, 四川 成都 610073
刘 琨:天津大学 精密仪器与光电子工程学院 天津大学光电信息技术教育部重点实验室 天津大学光纤传感研究所, 天津 300072
齐晓光:天津大学 精密仪器与光电子工程学院 天津大学光电信息技术教育部重点实验室 天津大学光纤传感研究所, 天津 300072
李 鑫:天津大学 精密仪器与光电子工程学院 天津大学光电信息技术教育部重点实验室 天津大学光纤传感研究所, 天津 300072
李元耀:天津市计量监督检测科学研究院, 天津 300192
刘铁根:天津大学 精密仪器与光电子工程学院 天津大学光电信息技术教育部重点实验室 天津大学光纤传感研究所, 天津 300072

联系人作者:刘畅(liuchangt@tju.edu.cn)

备注:刘畅(1991-), 男, 硕士生, 主要从事光纤传感方面的研究。

【1】Wang Ganglin, Zheng Sui. The development of fighter planes and the contribution of aerodynamics[J]. Physics, 2016, 45(10): 645-650. (in Chinese)

【2】Qin Yongming, Zhang Chun, Dong Jingang. Experimental study on flush air data sensing system calibration in wind tunnel[J]. Acta Aerodynamica Sinica, 2015, 33(4): 488-492. (in Chinese)

【3】Wu Xiaonan, Yu Jinyong, Xu Yuru. Application of the vibration canister pressure sensor in airplane[J]. Instrumentation Technology, 2010(6): 68-70. (in Chinese)

【4】Aryafar M, Hamedi M, Ganjeh M M. A novel temperature compensated piezoresistive pressure sensor[J]. Measurement, 2015, 63: 25-29.

【5】Balavalad K B, Sheeparamatti B G. A critical review of MEMS capacitive pressure sensors[J]. Sensors & Transducers, 2015, 187(4): 120.

【6】Chen Deyong, Cao Mingwei, Wang Junbo, et al. Fabrication and wafer-level vacuum packaging of MEMS resonant pressure sensor[J]. Optics and Precision Engineering, 2014, 22(5): 1235-1242. (in Chinese)

【7】Cheng R, Zhao Y, Li C, et al. Design and fabrication of a resonant pressure sensor by combination of DETF quartz resonator and silicon diaphragm[J]. Microsystem Technologies, 2015, 21(3): 631-640.

【8】Xu Ning, Dai Ming. Design of distributed optical fiber sensor for temperature and pressure measurement[J]. Chinese Optics, 2015, 8(4): 629-635. (in Chinese)

【9】Sun Qizhen, Wang Jingyi, Zhang W, et al. Polymer packaged longitudinal microstructured fiber based distributed pressure sensing system[J]. Infrared and Laser Engineering, 2016, 45(8): 0802003. (in Chinese)

【10】Lv Jiabo, Xu Xiping, Cai Cunliang, et al. Research of pipeline monitoring system based on fiber optic pressure sensor[J]. Infrared and Laser Engineering, 2015, 44(11):3343-3347. (in Chinese)

【11】Xu Guoquan, Xiong Daiyu. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 6(3): 306-317. (in Chinese)

【12】Yu Qingxu, Jia Chunyan. Diaphragm based miniature fiber optic pressure sensor with F-P cavity[J]. Optics & Precision Engineering, 2009, 17(12): 2887-2892. (in Chinese)

【13】Murphy K A, Gunther M F, Vengsarkar A M, et al. Fabry–Perot fiber-optic sensors in full-scale fatigue testing on an F-15 aircraft[J]. Applied Optics, 1992, 31(4): 431-433.

【14】Gander M J, MacPherson W N, Barton J S, et al. Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications[J]. IEEE Sensors Journal, 2003, 3(1): 102-107.

【15】Castracane J, Clow L P, Seidler G. Optical multichannel transducer array for wind tunnel applications[J]. Optical Engineering, 1996, 35(9): 2627-2633.

【16】Deng Gang. The application of Fiber Bragg Grating in the detection of wing pressure[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)

引用该论文

Liu Chang,Wang Shuang,Liang Yingjian,Jiang Junfeng,Mei Yunqiao,Liu Kun,Qi Xiaoguang,Li Xin,Li Yuanyao,Liu Tiegen. Design and preliminary experiment of optical fiber F-P pressure sensing system working in wind tunnel[J]. Infrared and Laser Engineering, 2018, 47(7): 0722002

刘 畅,王 双,梁应剑,江俊峰,梅运桥,刘 琨,齐晓光,李 鑫,李元耀,刘铁根. 光纤法珀压力传感系统设计与风洞初步实验[J]. 红外与激光工程, 2018, 47(7): 0722002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF