Photonics Research, 2018, 6 (9): 09000830, Published Online: Aug. 1, 2018   

Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers

Author Affiliations
1 Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
2 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
3 Key Laboratory of Transparent Opto-functional Inorganic Materials, Chinese Academy of Sciences, Shanghai 201899, China
4 School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China
5 e-mail: xdxu79@mail.sic.ac.cn
Abstract
We report on diode-pumped Er:Y2O3 ceramic lasers at about 2.7 μm in the tunable continuous-wave, self-Q-switching and tungsten disulfide (WS2)-based passively Q-switching regimes. For stable self-Q-switched operation, the maximum output power reaches 106.6 mW under an absorbed power of 2.71 W. The shortest pulse width is measured to be about 1.39 μs at a repetition rate of 26.7 kHz at maximum output. Using a spin-coated WS2 as a saturable absorber, a passively Q-switched Er:Y2O3 ceramic laser is also realized with a maximum average output power of 233.5 mW (for the first time, to the best of our knowledge). The shortest pulse width decreases to 0.72 μs at a corresponding repetition rate of 29.4 kHz, which leads to a pulse energy of 7.92 μJ and a peak power of 11.0 W. By inserting an undoped YAG thin plate as a Fabry–Perot etalon, for the passive Q switching, wavelength tunings are also demonstrated at around 2710, 2717, 2727, and 2740 nm.

Xiaofeng Guan, Jiawei Wang, Yuzhao Zhang, Bin Xu, Zhengqian Luo, Huiying Xu, Zhiping Cai, Xiaodong Xu, Jian Zhang, Jun Xu. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers[J]. Photonics Research, 2018, 6(9): 09000830.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!