首页 > 论文 > Photonics Research > 6卷 > 9期(pp:830-836)

Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We report on diode-pumped Er:Y2O3 ceramic lasers at about 2.7 μm in the tunable continuous-wave, self-Q-switching and tungsten disulfide (WS2)-based passively Q-switching regimes. For stable self-Q-switched operation, the maximum output power reaches 106.6 mW under an absorbed power of 2.71 W. The shortest pulse width is measured to be about 1.39 μs at a repetition rate of 26.7 kHz at maximum output. Using a spin-coated WS2 as a saturable absorber, a passively Q-switched Er:Y2O3 ceramic laser is also realized with a maximum average output power of 233.5 mW (for the first time, to the best of our knowledge). The shortest pulse width decreases to 0.72 μs at a corresponding repetition rate of 29.4 kHz, which leads to a pulse energy of 7.92 μJ and a peak power of 11.0 W. By inserting an undoped YAG thin plate as a Fabry–Perot etalon, for the passive Q switching, wavelength tunings are also demonstrated at around 2710, 2717, 2727, and 2740 nm.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000830

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61575164, 61575088, 11674269, 61475129); National Key Research and Development Program of China (2016YFB1102202); Natural Science Foundation of Fujian Province10.13039/501100003392 of China (2018J01108); Principal Fund of Xiamen University (20720180082).

收稿日期:2018-07-05

录用日期:2018-07-08

网络出版日期:2018-07-12

作者单位    点击查看

Xiaofeng Guan:Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
Jiawei Wang:Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
Yuzhao Zhang:Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
Bin Xu:Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
Zhengqian Luo:Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
Huiying Xu:Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
Zhiping Cai:Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
Xiaodong Xu:Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, Chinae-mail: xdxu79@mail.sic.ac.cn
Jian Zhang:Key Laboratory of Transparent Opto-functional Inorganic Materials, Chinese Academy of Sciences, Shanghai 201899, China
Jun Xu:School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China

联系人作者:Bin Xu(xubin@xmu.edu.cn)

【1】R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20 , 112–118 (1994).

【2】M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7 , 498–504 (2010).

【3】T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21 , 585–587 (1996).

【4】C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8?μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209 , 193–199 (2002).

【5】D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24 , 385–387 (1999).

【6】M. Robinson, and D. P. Devor, “Thermal switching of laser emission of Er3+ at 2.69??μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3,” Appl. Phys. Lett. 10 , 167–170 (1967).

【7】G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8??μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50 , 1553–1555 (1987).

【8】S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5??at.%) laser at 2.8??μm,” Opt. Commun. 132 , 107–110 (1996).

【9】J. K. Chen, D. L. Sun, J. Q. Luo, H. L. Zhang, R. Q. Dou, J. Z. Xiao, Q. L. Zhang, and S. T. Yin, “Spectroscopic properties and diode end-pumped 2.79??μm laser performance of Er, Pr:GYSGG crystal,” Opt. Express 21 , 23425–23432 (2013).

【10】Z. Y. You, Y. Wang, J. L. Xu, Z. J. Zhu, J. F. Li, H. Y. Wang, and C. Y. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7??μm,” Opt. Lett. 40 , 3846–3848 (2015).

【11】P. A. Loiko, K. V. Yumashev, R. Sch?del, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kr?nkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120 , 601–607 (2015).

【12】Z. Y. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05-μm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42 , 3781–3784 (2017).

【13】L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Y. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7??μm,” Opt. Express 22 , 19495–19503 (2014).

【14】G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32 , 2741–2743 (2007).

【15】A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175??fs Tm:Lu2O3 laser at 2.07??μm mode-locked using single-walled carbon nanotubes,” Opt. Express 20 , 5313–5318 (2012).

【16】Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42 , 547–550 (2017).

【17】Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29 , 1702496 (2017).

【18】B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3 nanosecond laser using MoS2 as saturable absorber,” Opt. Express 22 , 28934–28940 (2014).

【19】L. C. Kong, G. Q. Xie, P. Yuan, L. J. Qian, S. X. Wang, H. H. Yu, and H. J. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2??μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photon. Res. 3 , A47–A50 (2015).

【20】B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Topological insulator Bi2Se3 based Q-switched Nd:LiYF4 nanosecond laser at 1313??nm,” Opt. Express 23 , 7674–7680 (2015).

【21】X. Guan, L. Zhan, Z. Zhu, B. Xu, H. Xu, Z. Cai, W. Cai, X. Xu, J. Zhang, and J. Xu, “Continuous-wave and CVD-graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7??μm,” Appl. Opt. 57 , 371–376 (2018).

【22】M. Fan, T. Li, S. Zhao, G. Li, H. Ma, X. Gao, C. Krankel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84??μm using MoS2,” Opt. Lett. 41 , 540–543 (2016).

【23】C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3??μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13 , 105108 (2016).

【24】Z. Yan, T. Li, S. Zhao, K. Yang, D. Li, G. Li, S. Zhang, and Z. Gao, “MoTe2 saturable absorber for passively Q-switched Ho, Pr:LiLuF4 laser at 3??μm,” Opt. Laser Technol. 100 , 261–264 (2018).

【25】M. Fan, T. Li, J. Zhao, S. Zhao, G. Li, K. Yang, L. Su, H. Ma, and C. Krankel, “Continuous wave and ReS2 passively Q-switched Er:SrF2 laser at ~3??μm,” Opt. Lett. 43 , 1726–1729 (2018).

【26】J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40 , 3659–3662 (2015).

【27】Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8??μm,” Opt. Express 23 , 24713–24718 (2015).

【28】J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24 , 30289–30295 (2016).

【29】J. J. Liu, X. W. Fan, J. Liu, W. W. Ma, J. Y. Wang, and L. B. Su, “Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser,” Opt. Lett. 41 , 4660–4663 (2016).

【30】H. T. Huang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “Self-pulsed nanosecond 2.7-μm solid-state erbium laser by cooperatively enhanced reabsorption,” IEEE Photon. J. 7 , 1504207 (2015).

【31】J. L. Xu, Y. Ji, Y. Wang, Z. You, H. Wang, and C. Y. Tu, “Self-Q-switched, orthogonally polarized, dual-wavelength laser using long-lifetime Yb3+ crystal as both gain medium and saturable absorber,” Opt. Express 22 , 6577–6582 (2014).

【32】H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13 , 3447–3454 (2013).

【33】T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ~2.7??μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7 , 206–209 (2010).

【34】H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, and J. He, “Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95??μm,” Opt. Lett. 42 , 699–702 (2017).

引用该论文

Xiaofeng Guan, Jiawei Wang, Yuzhao Zhang, Bin Xu, Zhengqian Luo, Huiying Xu, Zhiping Cai, Xiaodong Xu, Jian Zhang, and Jun Xu, "Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers," Photonics Research 6(9), 830-836 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF