首页 > 论文 > Photonics Research > 6卷 > 9期(pp:837-846)

Review of fast methods for point-based computer-generated holography [Invited]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Computer-generated holography (CGH) is a technique for converting a three-dimensional (3D) object scene into a two-dimensional (2D), complex-valued hologram. One of the major bottlenecks of CGH is the intensive computation that is involved in the hologram generation process. To overcome this problem, numerous research works have been conducted with the aim of reducing arithmetic operations involved in CGH. In this paper, we shall review a number of fast CGH methods that have been developed in the past decade. These methods, which are commonly referred to as point-based CGH, are applied to compute digital Fresnel holograms for an object space that is represented in a point cloud model. While each method has its own strength and weakness, trading off conflicting issues, such as computation efficiency and memory requirement, they also exhibit potential grounds of synergy. We hope that this paper will bring out the essence of each method and provide some insight on how different methods may crossover into better ones.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000837

收稿日期:2018-05-08

录用日期:2018-06-29

网络出版日期:2018-07-02

作者单位    点击查看

P. W. M. Tsang:Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China
T.-C. Poon:Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
Y. M. Wu:Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China

联系人作者:P. W. M. Tsang(eewmtsan@cityu.edu.hk)

【1】P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge University, 1996).

【2】J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9 , 405–407 (1967).

【3】B. R. Brown, and A. W. Lohmann, “Complex spatial filtering with binary mask,” Appl. Opt. 5 , 967–969 (1966).

【4】A. W. Lohmann, and D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6 , 1739–1748 (1967).

【5】B. R. Brown, and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13 , 160–168 (1969).

【6】J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55 , 599–601 (1967).

【7】M. Bayraktar, and M. ?zcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography,” Appl. Opt. 49 , 4647–4654 (2010).

【8】J. Chen, and D. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23 , 18143–18155 (2015).

【9】H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56 , F138–F143 (2017).

【10】Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52 , A290–A299 (2013).

【11】J. Park, S. Kim, H. Yeom, H. Kim, H. Zhang, B. Li, Y. Ji, S. Kim, and S. Ko, “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram,” Opt. Express 23 , 33893–33901 (2015).

【12】H. Nishi, and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56 , F37–F44 (2017).

【13】T.-C. Poon, and J.-P. Liu, Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).

【14】T.-C. Poon, Optical Scanning Holography with MATLAB (Springer, 2007).

【15】H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8 , 1500 (2018).

【16】B. Jackin, S. Watanabe, K. Ootsu, T. Ohkawa, T. Yokota, Y. Hayasaki, T. Yatagai, and T. Baba, “Decomposition method for fast computation of gigapixel-sized Fresnel holograms on a graphics processing unit cluster,” Appl. Opt. 57 , 3134–3145 (2018).

【17】K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185 , 2742–2757 (2014).

【18】M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2 , 28–34 (1993).

【19】S. Kim, and E. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47 , D55–D62 (2008).

【20】S. Kim, J. Kim, and E. Kim, “Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram,” Appl. Opt. 50 , 3375–3382 (2011).

【21】S. Kim, and E. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt. 48 , 1030–1041 (2009).

【22】S. Kim, X. Dong, M. Kwon, and E. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21 , 11568–11584 (2013).

【23】X. Dong, S. Kim, and E. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22 , 8047–8067 (2014).

【24】Z. Yang, Q. Fan, Y. Zhang, J. Liu, and J. Zhou, “A new method for producing computer generated holograms,” J. Opt. 14 , 095702 (2012).

【25】J. Bresenham, “A linear algorithm for incremental digital display of circular arcs,” Commun. ACM 20 , 100–106 (1977).

【26】T. Nishitsuji, T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Fast calculation of computer-generated hologram using the circular symmetry of zone plates,” Opt. Express 20 , 27496–27502 (2012).

【27】S. Jiao, Z. Zhuang, and W. Zou, “Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation,” Opt. Express 25 , 112–123 (2017).

【28】Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17 , 18543–18555 (2009).

【29】J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52 , 1404–1412 (2013).

【30】H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49 , 5993–5996 (2010).

【31】C. Gao, J. Liu, X. Li, G. Xue, J. Jia, and Y. Wang, “Accurate compressed look up table method for CGH in 3D holographic display,” Opt. Express 23 , 33194–33204 (2015).

【32】H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging (2009), paper?DWC4.

【33】T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34 , 3133–3135 (2009).

【34】T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18 , 19504–19509 (2010).

【35】T. Shimobaba, and T. Ito, “Fast generation of computer-generated holograms using wavelet shrinkage,” Opt. Express 25 , 77–87 (2017).

【36】D. Arai, T. Shimobaba, T. Nishitsuji, T. Kakue, N. Masuda, and T. Ito, “An accelerated hologram calculation using the wavefront recording plane method and wavelet transform,” Opt. Commun. 393 , 107–112 (2017).

【37】N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of a computer-generated hologram for RGB and depth images using a wavefront recording plane method,” Photon. Lett. Poland 6 , 90–92 (2014).

【38】J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20 , 4018–4023 (2012).

【39】A. Phan, M. Piao, S. Gil, and N. Kim, “Generation speed and reconstructed image quality enhancement of a long-depth object using double wavefront recording planes and a GPU,” Appl. Opt. 53 , 4817–4824 (2014).

【40】A.-H. Phan, M. A. Alam, S.-H. Jeon, J.-H. Lee, and N. Kim, “Fast hologram generation of long-depth object using multiple wavefront recording planes,” Proc. SPIE 9006 , 900612 (2014).

【41】A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23 , 22149–22161 (2015).

【42】N. Hasegawa, T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes,” Appl. Opt. 56 , A97–A103 (2017).

【43】D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer-generated holograms using tilted wavefront recording plane method,” Opt. Express 23 , 1740–1747 (2015).

【44】P. W. M. Tsang, and T.-C. Poon, “Review on theory and applications of wavefront recording plane framework in generation and processing of digital holograms,” Chin. Opt. Lett. 11 , 010902 (2013).

【45】P. W. M. Tsang, K. Cheung, and T.-C. Poon, “Real-time relighting of digital holograms based on wavefront recording plane method,” Opt. Express 20 , 5962–5967 (2012).

【46】P. W. M. Tsang, T.-C. Poon, and K. Cheung, “Enhancing the pictorial content of digital holograms at 100 frames per second,” Opt. Express 20 , 14183–14188 (2012).

【47】P. W. M. Tsang, W. Cheung, T.-C. Poon, and C. Zhou, “Holographic video at 40 frames per second for 4-million object points,” Opt. Express 19 , 15205–15211 (2011).

【48】H. Yoshikawa, in Digital Holography and Three Dimensional Display: Principles and Applications , PoonT.-C., ed. (Springer, 2006).

【49】P. W. M. Tsang, J.-P. Liu, K. W. K. Cheung, and T.-C. Poon, “Fast generation of Fresnel holograms based on multirate filtering,” Appl. Opt. 48 , H23–H30 (2009).

【50】P. W. M. Tsang, J.-P. Liu, T.-C. Poon, and K. W. K. Cheung, “Fast generation of hologram sublines based on field programmable gate array,” in Holography and Three-Dimensional Imaging , OSA Technical Digest Series (2009), paper?Dwc2.

【51】P. W. M. Tsang, J.-P. Liu, K. W. K. Cheung, and T.-C. Poon, “An enhanced method for fast generation of hologram sub-lines,” Chin. Opt. Lett. 7 , 1092–1096 (2009).

【52】P. W. M. Tsang, K. W. K. Cheung, and T.-C. Poon, “Near computation-free compression of Fresnel holograms based on adaptive delta modulation,” Opt. Eng. 50 , 085802 (2011).

【53】P. W. M. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, and T.-C. Poon, “Low-complexity compression of holograms based on delta modulation,” Opt. Commun. 284 , 2113–2117 (2011).

【54】P. W. M. Tsang, K. W. K. Cheung, and T.-C. Poon, “Fast numerical generation and hybrid encryption of a computer-generated Fresnel holographic video sequence,” Chin. Opt. Lett. 11 , 020901 (2013).

【55】P. W. M. Tsang, W. C. Situ, W. K. Cheung, T.-C. Poon, and C. Zhou, “Fast generation of hologram from range camera images based on the sub-lines and holographic interpolation,” Proc. SPIE 8556 , 85560R (2012).

引用该论文

P. W. M. Tsang, T.-C. Poon, and Y. M. Wu, "Review of fast methods for point-based computer-generated holography [Invited]," Photonics Research 6(9), 837-846 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF