首页 > 论文 > Photonics Research > 6卷 > 9期(pp:847-852)

Enhancing plasmonic trapping with a perfect radially polarized beam

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Strong plasmonic focal spots, excited by radially polarized light on a smooth thin metallic film, have been widely applied to trap various micro- and nano-sized objects. However, the direct transmission part of the incident light leads to the scattering force exerted on trapped particles, which seriously affects the stability of the plasmonic trap. Here we employ a novel perfect radially polarized beam to solve this problem. Both theoretical and experimental results verify that such a beam could strongly suppress the directly transmitted light to reduce the piconewton scattering force, and an enhanced plasmonic trapping stiffness that is 2.6 times higher is achieved in experiments. The present work opens up new opportunities for a variety of research requiring the stable manipulations of particles.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000847

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61427819, 61490712, 91750205, U1701661, 61605117, 11604219); National Key Basic Research Program of China (973) (2015CB352004); National Key Research and Development Program of China (2016YFC0102401); Leading Talents Program of Guangdong Province (00201505); Natural Science Foundation of Guangdong Province10.13039/501100003453 (2016A030312010, 2016A030310063, 2017A030313351); Science and Technology Innovation Commission of Shenzhen (KQTD2015071016560101, KQTD2017033011044403, ZDSYS201703031605029, JCYJ2017818144338999); Excellent Young Teacher Program of Guangdong Province (YQ2014151); China Post-doctoral Science Foundation (2017M612722).

收稿日期:2018-04-17

录用日期:2018-06-27

网络出版日期:2018-07-04

作者单位    点击查看

Xianyou Wang:Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
Yuquan Zhang:Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
Yanmeng Dai:Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
Changjun Min:Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, Chinae-mail: cjmin@szu.edu.cn
Xiaocong Yuan:Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, Chinae-mail: xcyuan@szu.edu.cn

联系人作者:联系作者

【1】A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24 , 156–159 (1970).

【2】K. C. Neuman, and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75 , 2787–2809 (2004).

【3】P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41 , 1578–1586 (2008).

【4】K. Svoboda, and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19 , 930–932 (1994).

【5】P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5 , 1937–1942 (2005).

【6】R. Quidant, and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2 , 47–57 (2008).

【7】O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8 , 807–819 (2013).

【8】T. Shoji, and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5 , 2957–2967 (2014).

【9】C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4 , 2891 (2013).

【10】Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14 , 6430–6436 (2014).

【11】P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5 , 4357 (2014).

【12】L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8 , 9756–9763 (2016).

【13】L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3 , e1700458 (2017).

【14】Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X. C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37 , 4627–4629 (2012).

【15】M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54 , 1593–1596 (1996).

【16】Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339 , 138–152 (2017).

【17】Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9 , 10694–10700 (2017).

【18】M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2 , 021875 (2008).

【19】D. Bhalothia, and Y. T. Yang, “Trapping of micro particles in nanoplasmonic optical lattice,” J. Visualized Exp. e56151 (2017).

【20】K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2 , 469 (2011).

【21】A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13 , 991–996 (2017).10.1007/s11468-017-0597-y

【22】Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1 , 1–57 (2009).

【23】K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18 , 4518–4525 (2010).

【24】A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizon, “Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator,” Opt. Lett. 38 , 534–536 (2013).

【25】P. Vaity, and L. Rusch, “Perfect vortex beam: Fourier transformation of a Bessel beam,” Opt. Lett. 40 , 597–600 (2015).

【26】M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8 , e57984 (2013).

【27】Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7 , 44096 (2017).

【28】M. V. Jabir, N. A. Chaitanya, A. Aadhi, and G. K. Samanta, “Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6 , 21877 (2016).

【29】L. P. Du, G. H. Yuan, D. Y. Tang, and X. C. Yuan, “Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy,” Plasmonics 6 , 651–657 (2011).

【30】M. Born, and E. Wolf, Principles of Optics (Cambridge University, 1999).

【31】M. Sarshar, W. S. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19 , 115001 (2014).

【32】G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16 , 14561–14570 (2008).

【33】J. P. Staforelli, E. Vera, J. M. Brito, P. Solano, S. Torres, and C. Saavedra, “Superresolution imaging in optical tweezers using high-speed cameras,” Opt. Express 18 , 3322–3331 (2010).

【34】A. van der Horst, and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express 18 , 7670–7677 (2010).

【35】M. Druckmuller, “Phase correlation method for the alignment of total solar eclipse images,” Astrophys. J. 706 , 1605–1608 (2009).

【36】K. Berg-Sorensen, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75 , 594–612 (2004).

引用该论文

Xianyou Wang, Yuquan Zhang, Yanmeng Dai, Changjun Min, and Xiaocong Yuan, "Enhancing plasmonic trapping with a perfect radially polarized beam," Photonics Research 6(9), 847-852 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF