首页 > 论文 > Photonics Research > 6卷 > 9期(pp:867-874)

Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We propose an optical weighing technique with a sensitivity down to a single atom through the coupling between a surface plasmon and a suspended graphene nanoribbon resonator. The mass is determined via the vibrational frequency shift on the probe absorption spectrum while the atom attaches to the nanoribbon surface. We provide methods to separate out the signals of the ultralow frequency vibrational modes from the strong Rayleigh background, first based on the quantum coupling with a pump-probe scheme. Owing to the spectral enhancement in the surface plasmon and the ultralight mass of the nanoribbon, this scheme results in a narrow linewidth (~GHz) and ultrahigh mass sensitivity (~30 yg). Benefitting from the low noises, our optical mass sensor can be achieved at room temperature and reach ultrahigh time resolution.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000867

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11274230, 11574206); Basic Research Program of the Committee of Science and Technology of Shanghai (14JC1491700).

收稿日期:2018-04-17

录用日期:2018-05-28

网络出版日期:2018-06-05

作者单位    点击查看

Jian Liu:Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shanghai 200240, ChinaSchool of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, ChinaCollaborative Innovation Center of Advanced Microstructures, Nanjing 210000, China
Ka-Di Zhu:Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shanghai 200240, ChinaSchool of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, ChinaCollaborative Innovation Center of Advanced Microstructures, Nanjing 210000, China

联系人作者:Ka-Di Zhu(zhukadi@sjtu.edu.cn)

【1】M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57 , 783–826 (1985).

【2】A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4 , 1143–1212 (1992).

【3】M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116 , 478–483 (2012).

【4】S. M. Nie, and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275 , 1102–1106 (1997).

【5】W. Zhu, and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5 , 5228 (2014).

【6】J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130 , 12616–12617 (2008).

【7】D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional Raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13 , 2194–2198 (2013).

【8】R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Lou, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498 , 82–86 (2013).

【9】R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535 , 127–130 (2016).

【10】P. Roelli, C. Galland, N. Piro, and T. J. Kippenberg, “Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering,” Nat. Nanotechnol. 11 , 164–169 (2016).

【11】A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4 , 445–450 (2009).

【12】E. Gil-Santos, D. Ramos, A. Jana, M. Calleja, A. Raman, and J. Tamayo, “Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers,” Nano Lett. 9 , 4122–4127 (2009).

【13】H. Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8 , 4342–4346 (2008).

【14】K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3 , 533–537 (2008).

【15】J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7 , 301–304 (2012).

【16】M. LaHaye, O. Buu, B. Camarota, and K. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304 , 74–77 (2004).

【17】S. Chun, Y. Kim, H. Jin, E. Choi, S. B. Lee, and W. Park, “A graphene force sensor with pressure-amplifying structure,” Carbon 78 , 601–608 (2014).

【18】J. J. Li, and K. D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525 , 223–254 (2013).

【19】J. J. Li, and K. D. Zhu, “Weighing a single atom using a coupled plasmon-carbon nanotube system,” Sci. Tech. Adv. Mater. 13 , 025006 (2012).

【20】A. Sakhaee-Pour, M. T. Ahmadian, and R. Naghdabadi, “Vibrational analysis of single-layered graphene sheets,” Nanotechnology 19 , 085702 (2008).

【21】M. Sadeghi, and R. Naghdabadi, “Nonlinear vibrational analysis of single-layer graphene sheets,” Nanotechnology 21 , 105705 (2010).

【22】R. Gillen, M. Mohr, and J. Maultzsch, “Symmetry properties of vibrational modes in graphene nanoribbons,” Phys. Rev. B 81 , 205426 (2010).

【23】M. K. Schmidt, R. Esteban, A. Gonzalez-Tudela, G. Giedke, and J. Aizpurua, “Quantum mechanical description of Raman scattering from molecules in plasmonic cavities,” ACS Nano 10 , 6291–6298 (2016).

【24】V. Giovannetti, and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63 , 023812 (2001).

【25】D. F. Walls, and G. J. Milburn, Quantum Optics (Springer-Verlag, 1998), p.?124.

【26】R. W. Boyd, Nonlinear Optics (Academic, 2008).

【27】R. Narula, R. Panknin, and S. Reich, “Absolute Raman matrix elements of graphene and graphite,” Phys. Rev. B 82 , 045418 (2010).

【28】J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315 , 490–493 (2007).

【29】C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4 , 861–867 (2009).

【30】A. M. van der Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Large-scale arrays of single-layer graphene resonators,” Nano Lett. 10 , 4869–4873 (2010).

【31】V. Singh, S. Sengupta, H. S. Solanki, R. Dhall, A. Allain, S. Dhara, P. Pant, and M. M. Deshmukh, “Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators,” Nanotechnology 21 , 165204 (2010).

【32】B. R. Goldsmith, J. G. Coroneus, V. R. Khalap, A. A. Kane, G. A. Weiss, and P. G. Collins, “Conductance-controlled point functionalization of single-walled carbon nanotubes,” Science 315 , 77–81 (2007).

【33】K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95 , 2682–2689 (2004).

【34】C. Jiang, B. Chen, J. J. Li, and K. D. Zhu, “Mass sensing based on a circuit cavity electromechanical system,” J. Appl. Phys. 110 , 083107 (2011).

引用该论文

Jian Liu and Ka-Di Zhu, "Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics," Photonics Research 6(9), 867-874 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF