首页 > 论文 > Photonics Research > 6卷 > 9期(pp:880-886)

Tunable optical delay line based on integrated grating-assisted contradirectional couplers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Tunable optical delay lines are one of the key building blocks in optical communication and microwave systems. In this work, tunable optical delay lines based on integrated grating-assisted contradirectional couplers are proposed and experimentally demonstrated. The device performance is comprehensively improved in terms of parameter optimization, apodization analysis, and electrode design. Tunable group delay lines of 50 ps at different wavelengths within the bandwidth of 12 nm are realized with a grating length of 1.8 mm. Under thermal tuning mode, the actual delay tuning range is around 20 ps at 7.2 V voltage. At last, a new scheme adopting an ultra-compact reflector for doubling group delay is proposed and verified, achieving a large group delay line of 400 ps and a large dispersion value up to 5.5×106 ps/(nm·km) within bandwidth of 12 nm. Under thermal tuning mode, the actual delay tuning range is around 100 ps at 8 V voltage.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000880

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61475052, 61622502); Fundamental Research Funds for the Central Universities (2017KFXKJC001).

收稿日期:2018-05-27

录用日期:2018-07-22

网络出版日期:2018-07-24

作者单位    点击查看

Xu Wang:National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Yuhe Zhao:National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Yunhong Ding:Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
Sanshui Xiao:Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
Jianji Dong:National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

联系人作者:Jianji Dong(jjdong@mail.hust.edu.cn)

【1】F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1 , 65–71 (2007).

【2】M. Moralis-Pegios, N. Terzenidis, G. Mourgias-Alexandris, K. Vyrsokinos, and N. Pleros, “A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers,” Proc. SPIE 10538 , 1053805 (2018).

【3】J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9 , 1529–1531 (1997).

【4】C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek, and E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22 , 249–256 (2004).

【5】F. Wang, and X. Zhang, “Photonic generation of ultrawideband signals using a delay interferometer,” Front. Optoelectron. China 3 , 179–183 (2010).

【6】Z. Hu, J. Xu, and M. Hou, “Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay,” Front. Optoelectron. 10 , 180–188 (2017).

【7】R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25 , 1165–1168 (2013).

【8】V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napiera?a, T. Nasi?owski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference , OSA Technical Digest (online) (Optical Society of America, 2018), paper?M2G.5.

【9】H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3 , 867 (2012).

【10】X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46 , 379–383 (2007).

【11】J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, “Seven-bit reconfigurable optical true time delay line based on silicon integration,” Opt. Express 22 , 22707–22715 (2014).

【12】X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, K. Wu, and J. Chen, “Continuously tunable ultra-thin silicon waveguide optical delay line,” Optica 4 , 507–515 (2017).

【13】D. Perez, E. S. Gomariz, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. PP , 1 (2018).

【14】R. Kashyap, and M. de Lacerda Rocha, “On the group delay characteristics of chirped fibre Bragg gratings,” Opt. Commun. 153 , 19–22 (1998).

【15】G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37 , 525–532 (2001).

【16】L. Y. Mario, and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16 , 1796–1807 (2008).

【17】M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17 , 834–836 (2005).

【18】F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15 , 17273–17282 (2007).

【19】A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33 , 2389–2391 (2008).

【20】F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10??Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16 , 8395–8405 (2008).

【21】J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22 , 817–823 (2014).

【22】C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators,” IEEE J. Sel. Top. Quantum Electron. 24 , 1–9 (2018).

【23】J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16 , 6227–6232 (2008).

【24】J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16 , 192–199 (2010).

【25】A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2 , 181–194 (2010).

【26】C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101 , 051101 (2012).

【27】C.-J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112 , 071104 (2018).

【28】S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19 , 11780–11785 (2011).

【29】G. Brunetti, D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Design of an ultra-compact graphene-based integrated microphotonic tunable delay line,” Opt. Express 26 , 4593–4604 (2018).

【30】I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20 , 11241–11246 (2012).

【31】W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39 , 701–703 (2014).

【32】D. Tan, K. Ikeda, R. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33 , 3013–3015 (2008).

【33】R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

【34】Y. Wang, S. Gao, K. Wang, H. Li, and E. Skafidas, “Ultra-broadband, compact, and high-reflectivity circular Bragg grating mirror based on 220??nm silicon-on-insulator platform,” Opt. Express 25 , 6653–6663 (2017).

【35】Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. Jaeger, and L. Chrostowski, “Spiral Bragg grating waveguides for TM mode silicon photonics,” Opt. Express 23 , 25295–25307 (2015).

【36】Z. Zou, L. Zhou, M. Wang, K. Wu, and J. Chen, “Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides,” Opt. Express 24 , 12831–12839 (2016).

【37】D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33 , 3013–3015 (2008).

【38】E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large on-chip dispersion using cladding-modulated 1D photonic crystals,” in Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (2017), pp.?1–3.

【39】E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110 , 161113 (2017).

引用该论文

Xu Wang, Yuhe Zhao, Yunhong Ding, Sanshui Xiao, and Jianji Dong, "Tunable optical delay line based on integrated grating-assisted contradirectional couplers," Photonics Research 6(9), 880-886 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF