首页 > 论文 > Photonics Research > 6卷 > 9期(pp:908-917)

Modulation properties of solitary and optically injected phased-array semiconductor lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We study modulation properties of two-element phased-array semiconductor lasers that can be described by coupled mode theory. We consider four different waveguide structures and modulate the array either in phase or out of phase within the phase-locked regions, guided by stability diagrams obtained from direct numerical simulations. Specifically, we find that out-of-phase modulation allows for bandwidth enhancement if the waveguide structure is properly chosen; for example, for a combination of index antiguiding and gain-guiding, the achievable modulation bandwidth in the case of out-of-phase modulation could be much higher than the one when they are modulated in phase. Proper array design of the coupling, controllable in terms of the laser separation and the frequency offset between the two lasers, is shown to be beneficial to slightly improve the bandwidth but not the resonance frequency, while the inclusion of the frequency offset leads to the appearance of double peak response curves. For comparison, we explore the case of modulating only one element of the phased array and find that double peak response curves are found. To improve the resonance frequency and the modulation bandwidth, we introduce simultaneous external injection into the phased array and modulate the phased array or its master light within the injection locking region. We observe a significant improvement of the modulation properties, and in some cases, by modulating the amplitude of the master light before injection, the resulting 3 dB bandwidths could be enhanced up to 160 GHz. Such a record bandwidth for phased-array modulation could pave the way for various applications, notably optical communications that require high-speed integrated photonic devices.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000908

基金项目:Engineering and Physical Sciences Research Council (EPSRC)10.13039/501100000266 (EP/M024237/1).

收稿日期:2018-04-12

录用日期:2018-07-09

网络出版日期:2018-07-17

作者单位    点击查看

Nianqiang Li:School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
H. Susanto:Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
B. R. Cemlyn:School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
I. D. Henning:School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
M. J. Adams:School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

联系人作者:Nianqiang Li(wan_103301@163.com)

【1】R. S. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. 3 , 1180–1192 (1985).

【2】X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7 , 818–829 (2013).

【3】Z. A. Sattar, and K. A. Shore, “Analysis of the direct modulation response of nanowire lasers,” J. Lightwave Technol. 33 , 3028–3033 (2015).

【4】H. Han, and K. A. Shore, “Zero crosstalk regime direct modulation of mutually coupled nanolasers,” IEEE Photon. J. 9 , 1503412 (2017).

【5】K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photon. Rev. 9 , 488–497 (2015).

【6】H. Dalir, and F. Koyama, “29??GHz directly modulated 980??nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103 , 091109 (2013).

【7】L. Fan, G. Q. Xia, X. Tang, T. Deng, J. J. Chen, X. D. Lin, Y. N. Li, and Z. M. Wu, “Tunable ultra-broadband microwave frequency combs generation based on a current modulated semiconductor laser under optical injection,” IEEE Access 5 , 17764–17771 (2017).

【8】G. Morthier, R. Schatz, and O. Kjebon, “Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization,” IEEE J. Quantum Electron. 36 , 1468–1475 (2000).

【9】F. L. Wang, X. W. Ma, Y. Z. Huang, Y. D. Yang, J. Y. Han, and J. L. Xiao, “Relative intensity noise in high-speed hybrid square-rectangular lasers,” Photon. Res. 6 , 193–197 (2018).

【10】M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13 , 136–142 (2007).

【11】T. B. Simpson, and J. M. Liu, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32 , 1456–1468 (1996).

【12】A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39 , 1196–1204 (2003).

【13】N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, “Enhanced modulation bandwidth of a Fabry–Perot semiconductor laser subject to light injection from another Fabry–Perot laser,” IEEE J. Quantum Electron. 44 , 528–535 (2008).

【14】E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44 , 90–99 (2008).

【15】E. K. Lau, L. J. Wong, X. X. Zhao, Y. K. Chen, C. J. Chang-Hasnain, and M. C. Wu, “Bandwidth enhancement by master modulation of optical injection-locked lasers,” J. Lightwave Technol. 26 , 2584–2593 (2008).

【16】J. M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21 , 1801408 (2015).

【17】J. M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Effects of gain nonlinearities in an optically injected gain lever semiconductor laser,” Photon. Res. 5 , 315–319 (2017).

【18】L. Chrostowski, and W. Shi, “Monolithic injection-locked high-speed semiconductor ring lasers,” J. Lightwave Technol. 26 , 3355–3362 (2008).

【19】L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, and W. W. Chow, “40??GHz bandwidth and 64??GHz resonance frequency in injection-locked 1.55??μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13 , 1200–1208 (2007).

【20】D. Parekh, X. X. Zhao, W. Hofmann, M. C. Amann, L. A. Zenteno, and C. J. Chang-Hasnain, “Greatly enhanced modulation response of injection-locked multimode VCSELs,” Opt. Express 16 , 21582–21586 (2008).

【21】C. Wang, M. E. Chaibi, H. M. Huang, D. Erasme, P. Poole, J. Even, and F. Grillot, “Frequency-dependent linewidth enhancement factor of optical injection-locked quantum dot/dash lasers,” Opt. Express 23 , 21761–21770 (2015).

【22】C. Wang, F. Grillot, V. I. Kovanis, J. D. Bodyfelt, and J. Even, “Modulation properties of optically injection-locked quantum cascade lasers,” Opt. Lett. 38 , 1975–1977 (2013).

【23】C. Z. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. B. Hao, Y. J. Han, L. Wang, and H. T. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21 , 1802008 (2015).

【24】S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27 , 415–418 (2015).

【25】S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. McElfresh, J. E. Schutt-Ainé, and K. D. Choquette, “Modulation of coherently coupled phased photonic crystal vertical cavity laser arrays,” IEEE J. Sel. Top. Quantum Electron. 23 , 1700409 (2017).

【26】Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42 , 3173–3176 (2017).

【27】G. A. Wilson, R. K. DeFreez, and H. G. Winful, “Modulation of phased-array semiconductor lasers at K-band frequencies,” IEEE J. Quantum Electron. 27 , 1696–1704 (1991).

【28】D. Botez, and D. R. Scifres, Diode Laser Arrays (Cambridge University, 1994).

【29】H. Altug, and J. Vu?kovi?, “Photonic crystal nanocavity array laser,” Opt. Express 13 , 8819–8828 (2005).

【30】E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9 , 125–127 (1984).

【31】H. G. Winful, and S. S. Wang, “Stability of phase-locking in coupled semiconductor laser arrays,” Appl. Phys. Lett. 53 , 1894–1896 (1988).

【32】P. Ru, P. K. Jakobsen, J. V. Moloney, and R. A. India, “Generalized coupled-mode model for the multistripe index-guided laser arrays,” J. Opt. Soc. Am. B 10 , 507–515 (1993).

【33】H. Erzgr?ber, S. Wieczorek, and B. Krauskopf, “Dynamics of two laterally coupled semiconductor lasers: strong- and weak-coupling theory,” Phys. Rev. E 78 , 066201 (2008).

【34】Z. Gao, S. T. M. Fryslie, B. J. Thompson, P. Scott Carney, and K. D. Choquette, “Parity-time symmetry in coherently coupled vertical cavity laser arrays,” Optica 4 , 323–329 (2017).

【35】J. Shena, J. Hizanidis, V. Kovanis, and G. P. Tsironis, “Turbulent chimeras in large semiconductor laser arrays,” Sci. Rep. 7 , 42116 (2016).

【36】Y. Kominis, V. Kovanis, and T. Bountis, “Controllable asymmetric phase-locked states of the fundamental active photonic dimer,” Phys. Rev. A 96 , 043836 (2017).

【37】O. Hess, and E. Scholl, “Spatio-temporal dynamics in twin-stripe semiconductor lasers,” Physica D 70 , 165–177 (1994).

【38】N. Blackbeard, H. Erzgr?ber, and S. Wieczorek, “Shear-induced bifurcations and chaos in models of three coupled lasers,” SIAM J. Appl. Dyn. Syst. 10 , 469–509 (2011).

【39】S. S. Wang, and H. G. Winful, “Dynamics of phase-locked semiconductor laser arrays,” Appl. Phys. Lett. 52 , 1774–1776 (1988).

【40】H. G. Winful, and L. Rahman, “Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers,” Phys. Rev. Lett. 65 , 1575–1578 (1990).

【41】H. Lamela, M. Leones, G. Carpintero, C. Simmendinger, and O. Hess, “Analysis of the dynamics behavior and short-pulse modulation scheme for laterally coupled diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7 , 192–200 (2001).

【42】N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study,” Opt. Express 26 , 4751–4765 (2018).

【43】M. J. Adams, N. Q. Li, B. R. Cemlyn, H. Susanto, and I. D. Henning, “Effects of detuning, gain-guiding and index antiguiding on the dynamics of two laterally-coupled semiconductor lasers,” Phys. Rev. A 95 , 053869 (2017).

【44】R. Santos, and H. Lamela, “Experimental observation of chaotic dynamics in two coupled diode lasers through lateral model locking,” IEEE J. Quantum Electron. 45 , 1490–1494 (2009).

【45】L. Goldberg, H. F. Taylor, J. F. Weller, and D. R. Scifres, “Injection locking of coupledstripe diode laser arrays,” Appl. Phys. Lett. 46 , 236–238 (1985).

【46】C. M. Long, L. Mutter, B. Dwir, A. Mereuta, A. Caliman, A. Sirbu, V. Iakovlev, and E. Kapon, “Optical injection locking of transverse modes in 1.3-μm wavelength coupled-VCSEL arrays,” Opt. Express 22 , 21137–21144 (2014).

【47】J. Mercier, and M. McCall, “Stability and dynamics of an injection-locked semiconductor laser array,” Opt. Commun. 138 , 200–210 (1997).

【48】N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Locking bandwidth of two laterally-coupled lasers subjected to optical injection,” Sci. Rep. 8 , 109 (2018).

【49】N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Injection locking of two laterally-coupled semiconductor laser arrays,” Proc. SPIE 10682 , 106820Z (2018).

【50】N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers,” Phys. Rev. A 96 , 013840 (2017).

引用该论文

Nianqiang Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, "Modulation properties of solitary and optically injected phased-array semiconductor lasers," Photonics Research 6(9), 908-917 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF