High Power Laser Science and Engineering, 2018, 6 (3): 03000e46, Published Online: Aug. 22, 2018   

In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality

Author Affiliations
1 College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser, Changsha 410073, China
Abstract
High power superfluorescent fiber sources (SFSs), which could find wide applications in many fields such as middle infrared laser generation, Raman fiber laser pumping and spectral beam combination, have experienced a flourishing time in recent years for its unique properties, such as short coherence length and high temporal stability. The challenge for performance scalability of powerful SFS mainly lies on the physical issues including parasitic laser oscillation and modal instability (MI). In this contribution, by employing in-band pumping avenue and high-order transverse-mode management, we explore a high power SFS with record power, near-diffraction-limited beam quality and spectral manipulation flexibility. An ultimate output power of 3.14 kW can be obtained with high temporal stability and a beam quality of for the amplified light. Furthermore, the dynamics of spectral evolutions, including red-shifting of central wavelength and unsymmetrical broadening in spectral wings, of the main amplifier with different seed linewidths are investigated contrastively. Benefiting from the unique high pump brightness and high MI threshold of in-band pumping scheme, the demonstrated system also manifests promising performance scaling potential.

Jiangming Xu, Jun Ye, Hu Xiao, Jinyong Leng, Wei Liu, Pu Zhou. In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 2018, 6(3): 03000e46.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!