首页 > 论文 > 光子学报 > 47卷 > 6期(pp:623001--1)

石墨烯/二氧化钛异质结场效应探测器光电特性

Photoelectric Characteristics for Graphene/TiO2 Heterojunction Field Effect Photodetectors

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用二氧化钛薄膜光吸收及表面钝化特性, 在硅晶圆基底表面制备石墨烯/二氧化钛异质结场效应管光电探测器, 并研究其光电响应特性.结果表明, 二氧化钛钝化后的探测器可以有效抑制沟道表面的气体小分子吸附, 降低器件的暗电流漂移; 同时, 探测器利用石墨烯的电荷敏感和复合薄膜的光谱吸收特性, 显著提高了石墨烯场效应管的响应度.紫外波段, 顶层二氧化钛吸光产生的光生电子将注入到石墨烯沟道中, 对石墨烯沟道产生n型掺杂, 器件最大响应度可达3.5×105 A/W.在可见光波段, 因为二氧化钛层与石墨烯薄膜间存在杂质能级, 界面间的电荷转移使沟道载流子寿命显著提高.相对于传统的二氧化钛阵列探测器, 该探测器在响应波段与响应度性能上都具有明显优势.

Abstract

The photodetector based on Graphene/TiO2 heterostructure is fabricated on the substrate of Si wafer, which takes advantage of the light absorption and surface passivation of TiO2 film. The intrinsic photo-response of the photodetector is investigated in a wide range of wavelength. The result indicates that the graphene field-effect transistor photodetectors passivated with TiO2 film deposited on graphene can efficiently prevent the surface channel absorbing the gas molecules, which reduces the dark current drift of graphene field-effect transistor devices. Meanwhile, the graphene channel is sensitive to the changes in charge, and wide spectral absorption characteristics of the composite film can increase the responsivity of graphene field-effect transistor detector significantly. At the ultraviolet band, the photon-generated carries produced by TiO2 layer are mostly injected into the graphene channel, which leads to obvious n-type doping and the highest responsibility of 3.5×105 A/W. On the other side, at the visible band the impurity level between graphene and TiO2 can improve the carrier lifetime of channel compared with the intrinsic graphene. In contrast with the traditional TiO2 arrays photodetectors, the Graphene/TiO2 heterostructure devices have obvious advantage on the performance of response waveband and responsibility.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN324.1

DOI:10.3788/gzxb20184706.0623001

基金项目:国家自然科学基金(Nos.11404329, 61504148, 51402291, 61705229), 重庆市自然科学基金(No.CSTC2014jcyjjq50004), 重庆市基础科学与前沿技术研究专项基金(No. cstc2015jcyjA50018), 重庆市基础与前沿研究项目(No. cstc2015jcyjBX0046)资助

收稿日期:2017-12-06

修改稿日期:2018-03-26

网络出版日期:--

作者单位    点击查看

周全:中国人民解放军陆军工程大学 电子与光学工程系, 石家庄 050003中科院重庆绿色智能技术研究院, 重庆 400714
张恩亮:中科院重庆绿色智能技术研究院, 重庆 400714
白向兴:中科院重庆绿色智能技术研究院, 重庆 400714
申钧:中科院重庆绿色智能技术研究院, 重庆 400714
魏大鹏:中科院重庆绿色智能技术研究院, 重庆 400714
汪岳峰:中国人民解放军陆军工程大学 电子与光学工程系, 石家庄 050003中科院重庆绿色智能技术研究院, 重庆 400714

联系人作者:周全(zhouquan@cigit.ac.cn)

备注:周全(1990-), 男, 博士研究生, 主要研究方向为石墨烯材料及器件.

【1】GAN X, SHIUE R J, GAO Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883-887.

【2】MUELLER T, XIA F, AVOURIS P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301.

【3】LIU C H, CHANG Y C, NORRIS T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 2014, 9(4): 273-278.

【4】GUO N, HU W, JIANG T, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35): 16065.

【5】GHANBARZADEH S, ABBASZADEH S, ADACHI M, et al. Low dark current and high dynamic range a-Si: H MSM photodetector for large area medical imaging[C\]. SPIE, 2013: 86683U.

【6】HERRSCHER M, GRUNDMANN M, DROGE E, et al. Epitaxial liftoff InGaAs/InP MSM photodetectors on Si[J]. Electronics Letters, 2002, 31(16): 1383-1384.

【7】CHYI J I, HONG J W, LIN W, et al. Low dark current and high linearity InGaAs MSM photodetectors[J]. Electronics Letters, 2010, 30(4): 355-356.

【8】BROUCKAERT J, ROELKENS G, THOURHOUT D V, et al. Thin film InGaAs MSM photodetectors integrated onto silicon-on-insulator waveguide circuits[J]. Annual Symposium of the IEEE/LEOS Benelux Chapter, 2006: 117-120.

【9】POSPISCHIL A, HUMER M, FURCHI M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7(11): 892-896.

【10】XIA F, MUELLER T, LIN Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 1-2.

【11】ZHANG B Y, LIU T, MENG B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4(6): 1811.

【12】BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10): 351-355.

【13】DAWLATY J M, SHIVARAMAN S, CHANDRASHEKHAR M, et al. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Applied Physics Letters, 2008, 92(4): 042116.

【14】XIA F, MUELLER T, LIN Y, et al. Ultrafast graphene photodetector[C\]. Lasers and Electro-Optics, 2009: 1-2.

【15】SUN D, AIVAZIAN G, JONES A M, et al. Ultrafast hot-carrier-dominated photocurrent in graphene[J]. Nature Nanotechnology, 2012, 7(2): 114-118.

【16】KANG C G, LEE S K, CHOE S, et al. Intrinsic photocurrent characteristics of graphene photodetectors passivated with Al(2)O(3)[J]. Optical Express, 2013, 21(20): 23391-400.

【17】SUN P, ZHU M, WANG K, et al. Photoinduced molecular desorption from graphene films[J]. Applied Physics Letters, 2012, 101(5): 053107.

【18】WANG J, CHENG Z, CHEN Z, et al. Graphene photodetector integrated on silicon nitride waveguide[J]. Journal of Applied Physics, 2015, 117(14): 144504.

【19】GOO KANG C, KYUNG LEE S, YOO T J, et al. Highly sensitive wide bandwidth photodetectors using chemical vapor deposited graphene[J]. Applied Physics Letters, 2014, 104(16): 574.

【20】FURCHI M, URICH A, POSPISCHIL A, et al. Microcavity-integrated Graphene photodetector[J]. Nano Letters, 2012, 12(6): 2773.

【21】MIAO J, HU W, GUO N, et al. Photodetectors: high‐responsivity Graphene/InAs nanowire heterojunction near‐infrared photodetectors with distinct photocurrent on/off ratios (small 8/2015)[J]. Small, 2015, 11(8): 936.

【22】CHEN Z, CHENG Z, WANG J, et al. High responsivity, broadband, and fast Graphene/silicon photodetector in photoconductor mode[J]. Advanced Optical Materials, 2015, 3(9): 1207-1214.

【23】KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2011, 7(6): 363-368.

【24】GAO L, REN W, XU H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J]. Nature Communications, 2012, 3: 699.

【25】LI Tong-cai, GUO Bao-gang, LI Tong-hong, et al. Microstructure, phase composition and hydrophilic properties of nano TiO2 film prepared by electron beam evaporation[J]. Journal of Functional Materials, 2015, 46(13): 13035-13039.
李同彩, 郭宝刚, 李同洪, 等. 电子束蒸镀纳米TiO2薄膜结构、相组成及亲水性研究[J]. 功能材料, 2015, 46(13): 13035-13039.

【26】PENG Xiao-guang, WANG Yang, CAO Kai-bin, et al. Large-scale fabrication by vacuum evaporation and characterization of TiO2 thin films[J]. Journal of Functional Materials, 2008, 39(11): 1770-1773.
彭晓光, 汪洋, 曹开斌, 等. 大规模真空蒸镀二氧化钛薄膜及其表征[J]. 功能材料, 2008, 39(11): 1770-1773.

【27】HUANG F, JIA F, CAI C, et al. High- and reproducible-performance Graphene/II-VI semiconductor film hybrid photodetectors[J]. Scientific Reports, 2016, 6: 28943.

【28】WEI Zi-jun, WANG Zhi-gang, LI Chen, et al. Studies on the photoresponse in Graphene-based field-effect transistors[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(4): 704-708.
魏子钧, 王志刚, 李晨, 等. 石墨烯场效应晶体管的光响应特性研究[J]. 北京大学学报(自然科学版), 2014, 50(4): 704-708.

【29】JIA K, YANG J, SU Y, et al. Stability analysis of a back-gate graphene transistor in air environment[J]. Journal of Semiconductors, 2013, 34(8): 084004.

【30】LIAO Z M, HAN B H, ZHOU Y B, et al. Hysteresis reversion in graphene field-effect transistors[J]. Journal of Chemical Physics, 2010, 133(4): 044703.

【31】FERRIGHI L, FAZIO G, VALENTIN C D. Charge carriers separation at the Graphene/(101) anatase TiO2 Interface[J]. Advanced Materials Interfaces, 2016, 3(6): 1500624.

【32】LIU Y, WANG F, WANG X, et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors[J]. Nature Communications, 2015, 6: 8589.

【33】KOPPENS F H, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793.

【34】ZOU J, ZHANG Q, HUANG K, et al. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays[J]. Journal of Physical Chemistry C, 2010, 114(24): 10725-10729.

【35】SHOUGAIJAM B, LENKA T R, NGANGBAM C. Fast response time photodetector based on annealed TiO2 nanowires deposited by GLAD[C\]. Region 10 Conference (TENCON), 2017: 2757-2760.

【36】XUE H, KONG X, LIU Z, et al. TiO2 based metal-semiconductor-metal ultraviolet photodetectors[J]. Applied Physics Letters, 2007, 90(20): 223505.

【37】ZU X, WANG H, YI G, et al. Self-powered UV photodetector based on heterostructured TiO2 nanowire arrays and polyaniline nanoflower arrays[J]. Synthetic Metals, 2015, 200: 58-65.

【38】FANG X, BANDO Y, LIAO M, et al. Single‐crystalline ZnS nanobelts as ultraviolet‐light sensors[J]. Advanced Materials, 2009, 21(20): 2034-2039.

【39】HSIAO C H, CHANG S J, WANG S B, et al. ZnSe nanowire photodetector prepared on oxidized silicon substrate by molecular-beam epitaxy[J]. Journal of the Electrochemical Society, 2009, 156(4): J73-J76.

引用该论文

ZHOU Quan,ZHANG En-liang,BAI Xiang-xing,SHEN Jun,WEI Da-peng,WANG Yue-feng. Photoelectric Characteristics for Graphene/TiO2 Heterojunction Field Effect Photodetectors[J]. ACTA PHOTONICA SINICA, 2018, 47(6): 0623001

周全,张恩亮,白向兴,申钧,魏大鹏,汪岳峰. 石墨烯/二氧化钛异质结场效应探测器光电特性[J]. 光子学报, 2018, 47(6): 0623001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF