首页 > 论文 > 光子学报 > 47卷 > 5期(pp:525002--1)

六角密排多迭层碳纳米管阴极的大电子发射电流和高电子发射稳定性

Large Electron Emission Current and High Electron Emission Stability of Hexagonal Close-packed Multi-lamination-layer Carbon Nanotube Cathode

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研制了一种六角密排多迭层碳纳米管阴极.在这种结构中, 衬底银电极由烧结的银浆制作在透明锡铟氧化物电极上, 且具有六角形边缘, 相邻衬底银电极交错排列于阴极面板上.用ZnO和SnO2颗粒作为掺杂材料, 在衬底银电极和单一碳纳米管层之间制作了底部混杂层; 单一碳纳米管层中的碳纳米管主要被用于发射阴极电子.给出了六角密排多迭层碳纳米管阴极的制作工艺, 并研究了六角密排多迭层碳纳米管阴极用于电子源的可行性.将氮气作为保护气体, 采用烧结方法除掉制备浆料中的有机粘合剂及其它有机杂质.将六角密排多迭层碳纳米管阴极真空密封进三极场发射显示器中, 能够形成稳定的电子发射电流.测试结果表明, 与普通碳纳米管阴极相比, 六角密排多迭层碳纳米管阴极具有更优的电子发射特性, 其开启电场为1.83 V/μm, 最大电子发射电流为2 718.6 μA; 且其具有良好的电子发射曲线趋势, 当电场强度从2.17 V/μm增强到3.06 V/μm时, 电子发射电流的增幅约为1 410.3 μA.对电子发射电流随时间的波动变化进行了测试, 测试结果显示六角密排多迭层碳纳米管阴极具有可靠且稳定的电子发射电流.绿色发射图像表明六角密排多迭层碳纳米管阴极具有良好的电子发射均匀性及高的电子发射亮度.鉴于其简单的制作结构和制作工艺, 六角密排多迭层碳纳米管阴极具有一定的实际应用性.

Abstract

A Hexagonal Close-packed Multi-lamination-layer Carbon Nanotube (HCP-MLL-CNT) cathode is proposed. In this scheme, the silver slurry is sintered to form the substrate silver electrode with a hexagon-shaped edge, which is fabricated on the transparent indium-tin-oxide electrode, with a staggered arrangement of the adjacent substrate silver electrode on the cathode faceplate. Using ZnO and SnO2 powders as mixing materials, the base blending layer is formed between the substrate silver electrode and the single CNT layer, whereas the CNTs in single CNT layers are mainly utilized to emit the cathode electrons. The fabrication process of an HCP-MLL-CNT cathode is discussed in detail, and and the feasibility study which the HCP-MLL-CNT cathode is applicable as an electron source is performed. The sintering method, in which the nitrogen gas is used as a protective gas, was adopted to remove the organic binder materials and other organic impurities of the preparation slurry. The HCP-MLL-CNT cathode was vacuum-sealed into the triode field emission display, and a stable electron emission current was formed. The measurement results indicate that the proposed HCP-MLL-CNT cathode possesses the enhanced electron emission characteristics, a low turn-on electric field of 1.83 V/μm, and the increased maximum electron emission current of 2718.6 μA. The HCP-MLL-CNT cathode revealed an excellent electron emission curve trend, in which the increasing range of electron emission current was approx. 1410.3 μA for the electric field enhancement range from 2.17 V/μm to 3.06 V/μm. The fluctuation of the electron emission current with time was also measured, and a reliable and stabile electron emission for HCP-MLL-CNT cathode was experimentally verified. The green emission image was displayed, which corroborated a good electron emission uniformity and high electron emission luminance of the proposed HCP-MLL-CNT cathode. It is shown that a simple fabrication structure and manufacturing process of the proposed HCP-MLL-CNT cathode possesses a high potential for practical applications.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TB383;TB79

DOI:10.3788/gzxb20184705.0525002

基金项目:The National Natural Science Foundation of China (No.61302167), the Key Science and Technology Research Projects of Henan Province (No. 172102210390), and the Scientific Research Starting Foundation for High Level Talents in Jinling Institute of Technology (No.jit-rcyj-201602)

收稿日期:2017-11-29

修改稿日期:2018-02-05

网络出版日期:--

作者单位    点击查看

李玉魁:金陵科技学院 电子信息工程学院, 南京 211169
刘云朋:焦作大学 信息工程学院, 河南 焦作 454000
武超:中原工学院 电子信息学院, 郑州 450007
杨娟:金陵科技学院 电子信息工程学院, 南京 211169

联系人作者:李玉魁(lyksound@sina.com)

备注:LI Yu-kui (1973-), male, professor, Ph.D. degree, mainly focuses on flat panel display technology, electron device, solar cell fabrication, nano-materials preparation and applications.

【1】TRUONG T K, LEE Y, SUH D. Multifunctional characterization of carbon nanotube sheets, yarns, and their composites[J]. Current Applied Physics, 2016, 16(9): 1250-1258.

【2】BULLER S, HEISE-PODLESKA M, PFANDER N, et al. Carbon nanotubes as conducting support for potential Mn-oxide electrocatalysts: lnfluences of pre-treatment procedures[J]. Journal of Energy Chemistry, 2016, 25(2): 265-271.

【3】MALLAKPOUR S, ZADEHNAZARI A. Preparation of dopamine-functionalized multi-wall carbon nanotube/ poly (amide-imide) composites and their thermal and mechanical properties[J]. New Carbon Materials, 2016, 31(1): 18-30.

【4】AAZAM E S. Visible light photocatalytic degradation of thiophene using Ag-TiO2/ multi-walled carbon nanotubes nanocomposite[J]. Ceramics International, 2014, 40(5): 6705-6711.

【5】DHIMAN S, KUMAR R, DHARAMVIR K. Study of structural and electronic properties of doped arm chair single-walled carbon nanotube[J]. Materials Today: Proceedings, 2016, 3(6): 1820-1827.

【6】SAMIEE L, SHOGHI F, MAGHSODI A. In situ functionalization of mesoporous carbon electrodes with carbon nanotubes for proton exchange membrane fuel-cell application[J]. Materials Chemistry and Physics, 2014, 143(3): 1228-1235.

【7】KANDASAMY R, MUHAIMIN I, MOHAMMAD R. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions[J]. Alexandria Engineering Journal, 2016, 55(1): 275-285.

【8】KWAK E H, YOON K B, JEONG G H. Comparative study on diameter distribution of single-walled carbon nanotubes using growth templates with different pore sizes: Zeolite-L, ZSM-5, and MCM-41[J]. Current Applied Physics, 2014, 14(12): 1633-1638.

【9】MAITY S, DAS N S, SANTRA S, et al. CdS nanoparticle coated carbon nanotube through magnetron sputtering and its improved field emission performance[J]. Current Applied Physics, 2016, 16(10): 1293-1302.

【10】HSIEH C T, GU J L, TZOU D Y, et al. Microwave deposition of Pt catalysts on carbon nanotubes with different oxidation levels for formic acid oxidation[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10345-10353.

【11】KAVINKUMAR T, MANIVANNAN S. Synthesis, characterization and gas sensing properties of grapheme oxide-multiwalled carbon nanotube composite[J]. Journal of Materials Science & Technology, 2016, 32(7): 626-632.

【12】KWAK J H, HAN J K, KANG S W, et al. Dielectric relaxation properties of Pb TiO3-multiwalled carbon nanotube composites prepared by a sol-gel process[J]. Ceramics International, 2016, 42(7): 8165-8169.

【13】DARBARI S. Model calculation and empirical investigation of enhanced field emission behavior of branched carbon nanostructures[J]. Current Applied Physics, 2014, 14(8): 1092-1098.

【14】HAYAT T, HUSSAIN Z, ALSAEDI A, et al. Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness[J]. Advanced Powder Technology, 2016, 27(4): 1677-1688.

【15】YOUH M J, CHOU Y P, LIU Y M, et al. Simulation and modeling of alignment-free field emission X-ray tubes[J]. Applied Mathematical Modelling, 2015, 39(19): 5896-5906.

【16】SMITHSON C, WU Y, WIGGLESWORTH T, et al. Using unsorted single-wall carbon nanotubes to enhance mobility of diketopyrrolopyrrole-quarterthiophene copolymer in thin-film transistors[J]. Organic Electronics, 2014, 15(11): 2639-2646.

【17】SARWAR M S U, DAHMARDEH M, NOJEH A, et al. Batch-mode micropatterning of carbon nanotube forests using UV-LIGA assisted micro-electro-discharge machining[J]. Journal of Materials Processing Technology, 2014, 214(11): 2537-2544.

【18】THOMAS T, MASCARENHAS R J, MARTIS P, et al. Multi-walled carbon nanotube modified carbon paste electrode as an electrochemical sensor for the determination of epinephrine in the presence of ascorbic acid and uric acid[J]. Materials Science and Engineering: C, 2013, 33(6): 3294-3302.

【19】SARASWAT S K, PANT K K. Synthesis of carbon nanotubes by thermo catalytic decomposition of methane over Cu and Zn promoted Ni/MCM-22 catalyst[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 746-754.

【20】GKIKAS M, DAS B P, TSIANOU M, et al. Surface initiated ring-opening polymerization of L-proline N-carboxy anhydride from single and multi walled carbon nanotubes[J]. European Polymer Journal, 2013, 49(10): 3095-3103.

【21】ROSADO G, VERDE Y, VALENZUELA-MUNIZ A M, et al. Catalytic activity of Pt-Ni nanoparticles supported on multi-walled carbon nanotubes for the oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23260-23271.

【22】ANGULAKSHMI V S, RAJASEKAR K, SATHISKUMAR C, et al. Growth of vertically aligned carbon nanotubes on a silicon substrate by a spray pyrolysis method[J]. New Carbon Materials, 2013, 28(4): 284-287.

【23】WONG W Y, DAUD W R W, MOHAMAD A B, et al. Influence of nitrogen doping on carbon nanotubes towards the structure, composition and oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9421-9430.

【24】DJOKIC V R, MARINKOVIC A D, ERSEN O, et al. The dependence of the photocatalytic activity of TiO2/ carbon nanotubes nanocomposites on the modification of the carbon nanotubes[J]. Ceramics International, 2014, 40(3): 4009-4018.

【25】WANG Feng-ge, LI Yu-kui, LU Wen-ke. Fabrication of groove shape cold cathode forenhancing field emission properties of carbon nanotube[J]. Acta Photonica Sinica, 2014, 43(4): 423001-423007.

【26】YOON D H, CHOI Y C. Improved field emission stability and uniformity of printed carbon nanotubes prepared using high energy-milled glass frit[J]. Current Applied Physics, 2013, 13(7): 1477-1481.

【27】LI Yu-kui, WANG Feng-ge, LIU Xing-hui,et al. Fabrication of integral type cold cathode with carbon nanotube for improving the electrical contact and adhesion performance[J]. Acta Photonica Sinica, 2013, 42(6): 637-644.

【28】BAEG K J, JEONG H J, JEONG S Y, et al. Enhanced ambipolar charge transport in staggered carbon nanotube field-effect transistors for printed complementary-like circuits[J]. Current Applied Physics, 2017, 17(4): 541-547.

【29】TUNCKOL M, HEMANDEZ E Z, SARASUA J R, et al. Polymerized ionic liquid functionalized multi-walled carbon nanotubes/ polyetherimide composites[J]. European Polymer Journal, 2013, 49(12): 3770-3777.

【30】AYKUT Y. Electrospun MgO-loaded carbon nanofibers: enhanced field electron emission from the fibers in vacuum[J]. Journal of Physics and Chemistry of Solids, 2013, 74(2): 328-337.

引用该论文

LI Yu-kui,LIU Yun-peng,WU Chao,YANG Juan. Large Electron Emission Current and High Electron Emission Stability of Hexagonal Close-packed Multi-lamination-layer Carbon Nanotube Cathode[J]. ACTA PHOTONICA SINICA, 2018, 47(5): 0525002

李玉魁,刘云朋,武超,杨娟. 六角密排多迭层碳纳米管阴极的大电子发射电流和高电子发射稳定性[J]. 光子学报, 2018, 47(5): 0525002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF