首页 > 论文 > 激光与光电子学进展 > 55卷 > 9期(pp:91008--1)

基于卷积神经网络和改进模糊C均值的遥感图像检索

Remote Sensing Image Retrieval Based on Convolutional Neural Network and Modified Fuzzy C-Means

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于内容的遥感图像检索存在着低层视觉特征与用户对图像理解的高层语义不一致、图像检索精度低以及单一的距离度量方法不能完全真实反映图像之间相似程度等问题。对此提出一种基于改进的模糊C均值聚类和卷积神经网络的遥感图像检索方法。该方法充分利用遥感图像的特性, 通过Retinex算法自适应处理遥感图像噪声, 运用自学习能力良好的卷积神经网络对遥感图像进行多层神经网络的监督学习, 提取遥感图像特征, 并运用改进的模糊C均值进行特征聚类分析。同时, 将快速排序算法与距离位置权重相结合的Top-k排序算法运用到实验当中, 提高遥感图像的检索精度。实验表明, 该方法可以显著提高遥感图像的检索性能。

Abstract

Aiming at the problems in content-based image retrieval, such as inconsistence between low-level visual features and the user′s high-level semantics for image understanding, low image retrieval accuracy, and the inability of a single distance measurement method for complete reflection of the similarity degree between images, we propose a remote sensing image retrieval method based on improved fuzzy C-means clustering and convolutional neural network (CNN). This method makes full use of the characteristics of remote sensing images. It adaptively processes the noise of remote sensing images by using Retinex algorithm, and uses CNN to supervise the remote sensing images by multi-layer neural network to extract remote sensing image features. Besides, the modified fuzzy C-means clustering is adopted for feature clustering analysis. Meanwhile, the top-k sorting algorithm which combines the quick sorting algorithm with the distance position weights is applied to improve the retrieval accuracy of the remote sensing images. Experimental results show that this method can significantly improve the performance of remote sensing image retrieval.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP753

DOI:10.3788/lop55.091008

所属栏目:图像处理

基金项目:国家自然科学基金(61702241)、辽宁省教育厅高等学校基本科研项目(LJ2017FBL004)、辽宁省博士科研启动基金(201601365)、辽宁省教育厅城市研究院一般项目(LJCL008)

收稿日期:2018-03-19

修改稿日期:2018-04-19

网络出版日期:2018-04-24

作者单位    点击查看

彭晏飞:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105
宋晓男:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105
訾玲玲:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105
王伟:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105

联系人作者:宋晓男(1533721760@qq.com); 彭晏飞(pengyf75@126.com);

【1】Hang Y, Yang Y B, Chen Z Q. A survey of content-based image retrieval[J].Application Research of Computers, 2002, 19(9): 9-13, 29.
杭燕, 杨育彬, 陈兆乾. 基于内容的图像检索综述[J]. 计算机应用研究, 2002, 19(9): 9-13, 29.

【2】Liu L, Kuang G Y. Overview of image textural feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4): 622-635.
刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4): 622-635.

【3】Tanase M, Veltkamp R C. Part-based shape retrieval with relevance feedback[C]. IEEE International Conference on Multimedia and Expo, 2005: 936-939.

【4】Scott G, Klaric M, Shyu C R. Modeling multi-object spatial relationships for satellite image database indexing and retrieval[C]. International Conference on Image and Video Retrieval, 2005: 247-256.

【5】Deng L. A tutorial survey of architectures, algorithms, and applications for deep learning[J]. APSIPA Transactions on Signal and Information Processing, 2014, 3: e2.

【6】Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]. Annual Conference on Neural Information Processing Systems, 2012: 1097-1105.

【7】Yang H Y, Jiang X H, Nie Z X. Facial key points location based on parallel convolutional neural network[J]. Application Research of Computers, 2015,32(8): 2517-2519.
杨海燕, 蒋新华, 聂作先. 基于并行卷积神经网络的人脸关键点定位方法研究[J]. 计算机应用研究, 2015, 32(8): 2517-2519.

【8】Fu R, Li B, Gao Y, et al. Content-based image retrieval based on CNN and SVM[C]. 2016 2nd IEEE International Conference on Computer and Communications (ICCC), 2016: 638-642.

【9】Liu B, Zhang H. Image retrieval algorithm based on convolutional neural network and manifold ranking[J]. Journal of Computer Applications, 2016, 36(2): 531-534, 540.
刘兵, 张鸿. 基于卷积神经网络和流形排序的图像检索算法[J]. 计算机应用, 2016, 36(2): 531-534, 540.

【10】Gong Z T, Chen G X, Ren X L, et al. An image retrieval method based on a convolutional neural network and hash coding[J]. CAAI Transactions on Intelligent Systems, 2016,11(3): 391-400.

【11】Jiang H Y, Dai M L, Su Z L, et al. An adaptive sine/cosine filtering algorithm based on speckle phase fringe orientation[J]. Acta Optica Sinica, 2017, 37(9): 0910001.
蒋汉阳, 戴美玲, 苏志龙, 等. 基于散斑相位条纹方向的自适应正弦/余弦滤波[J]. 光学学报, 2017, 37(9): 0910001.

【12】Wang Y M, Chen D M, Zhao G B. Image fusion algorithm of infrared and visible images based on target extraction and Laplace transformation[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011002.
汪玉美, 陈代梅, 赵根保. 基于目标提取与拉普拉斯变换的红外和可见光图像融合算法[J]. 激光与光电子学进展, 2017, 54(1): 011002.

【13】Dai J T, Tang X Y, Wang S Y, et al. Real-time image transmission system of scanning IRFPA[J]. Laser & Infrared, 2016, 46(4): 476-480.
代具亭, 汤心溢, 王世勇, 等. 扫描型红外焦平面探测器图像实时传输系统[J]. 激光与红外, 2016, 46(4): 476-480.

【14】Xu Z H, Wu J J. Intuitionistic fuzzy C-means clustering algorithms[J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 580-590.

【15】Tripathy B K, Tripathy A, Rajulu K G. Possibilistic rough fuzzy C-means algorithm in data clustering and image segmentation[C]. 2014 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 2014: 1-6.

【16】Li Z Y, Tang K Z, Hu J M, et al. Directional weighted mean filter for image with salt & pepper noise[J]. Journal of Image and Graphics, 2013, 18(11): 1407-1415.
李佐勇, 汤可宗, 胡锦美, 等. 椒盐图像的方向加权均值滤波算法[J]. 中国图象图形学报, 2013, 18(11): 1407-1415.

【17】Li D M, Gai M Y, Li C R, et al. Research on adaptive optics image denoising algorithm based on the wavelet-based contourlet transform[J]. Laser & Optoelectronics Progress, 2015, 52(11): 111001.
李东明, 盖梦野, 李超然, 等. 基于小波域的Contourlet变换法的自适应光学图像去噪算法研究[J]. 激光与光电子学进展, 2015, 52(11): 111001.

【18】Land E H. Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(16): 5163-5169.

【19】Jang J H, Bae Y, Ra J B. Contrast-enhanced fusion of multisensor images using subband-decomposed multiscale retinex[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3479-3490.

【20】Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[J]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.

【21】Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification[C]. 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2010: 270-279.

【22】Datar M, Immorlica N, Indyk P, et al. Locality-sensitive hashing scheme based on p-stable distributions[C]. Twentieth Annual Symposium on Computational Geometry, 2004: 253-262.

【23】Jin Z M, Li C, Lin Y, et al. Density sensitive hashing [J]. IEEE Transactions on Cybernetics, 2014, 44(8): 1362-1371.

引用该论文

Peng Yanfei,Song Xiaonan,Zi Lingling,Wang Wei. Remote Sensing Image Retrieval Based on Convolutional Neural Network and Modified Fuzzy C-Means[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091008

彭晏飞,宋晓男,訾玲玲,王伟. 基于卷积神经网络和改进模糊C均值的遥感图像检索[J]. 激光与光电子学进展, 2018, 55(9): 091008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF