首页 > 论文 > 激光与光电子学进展 > 55卷 > 9期(pp:92501--1)

栅状结构石墨烯超材料的太赫兹波偏振调制

Polarization Modulation of Terahertz Wave by Graphene Metamaterial with Grating Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种基于栅状结构石墨烯超材料的电控器件, 利用有限元分析方法研究了其太赫兹波偏振调制特性。结果表明:在0.1~2.0 THz的宽波段内, 平行于条带的偏振太赫兹波(TE)响应由石墨烯的Drude电导决定, 表现出强的均匀调制; 垂直于条带的偏振太赫兹波(TM)受石墨烯中等离子体效应的影响而基本透明。加栅压提高石墨烯的费米能级可以增强TE的衰减, 并使TM的等离子体峰蓝移; 石墨烯的面积占比越高, 器件的响应越强; 增大条带宽度会引起等离子体峰红移; 增加石墨烯层数可以使器件的偏振度进一步提高。以2 μm为周期, 条带宽为1.5 μm的6层石墨烯器件的可调偏振度在费米能级为0.8 eV时可以达到0.89。该工作为新型太赫兹偏振调制器件的设计提供了思路。

Abstract

We design an electronic control device based on graphene metamaterial with grating structure and study its polarization modulation properties in the terahertz region by finite element analysis method. The results show that in a wide band range of 0.1-2.0 THz, a broadband modulation occurs in the transmission of polarized terahertz wave parallel to the band (TE). It can be attributed to the intraband determined Drude conductivity of graphene. However, because of the plasma effect of graphene metamaterial, the transmission of polarized terahertz wave perpendicular to the band (TM) is almost transparent in the same terahertz region. More calculations also prove that with the increase of Fermi level of graphene, the modulation of TE will be enhanced largely while the plasma peak of TM will be blue shift. Meanwhile, the modulation can be further enhanced by the increase of the area ratio of graphene and the number of graphene layers in the device. In addition, the increase of the band width can cause a red shift of the plasma peak. With 2 μm period and 1.5 μm band width, a tunable maximum polarization degree of 0.89 can be achieved with 6 layer graphene device at Fermi level of 0.8 eV. This work paves a way for new graphene based terahertz polarization modulator.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop55.092501

所属栏目:光电子学

基金项目:国家自然科学基金(61605160)、陕西省自然科学基金(2016JQ1010)、陕西省教育厅专项科研项目(16JK1781)、陕西省高校科协青年人才托举计划(20160114)

收稿日期:2018-02-27

修改稿日期:2018-04-05

网络出版日期:2018-04-10

作者单位    点击查看

曹建国:西安建筑科技大学理学院, 陕西 西安 710055西北大学物理学院省部共建光电技术与功能材料国家重点实验室培育基地, 陕西 西安 710069
周译玄:西北大学物理学院省部共建光电技术与功能材料国家重点实验室培育基地, 陕西 西安 710069

联系人作者:周译玄(yxzhou@nwu.edu.cn); 曹建国(285291027@qq.com);

【1】Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105.

【2】Williams G P. Filling the THz gap-high power sources and applications[J]. Reports on Progress in Physics, 2006, 69(2): 301-326.

【3】Liu L M, Zhao G Z, Zhang G H, et al. Polarization characteristics of one-dimensional metallic wire-grating polarizer in terahertz frequency range[J]. Chinese Journal of Lasers, 2012, 39(3): 0311001.
刘立明, 赵国忠, 张杲辉, 等. 太赫兹波段一维金属线栅的偏振特性研究[J]. 中国激光, 2012, 39(3): 0311001.

【4】Mao H Y, Xu H M, Xia L P, et al. A large area and low loss thin-film terahertz polarizer[J]. Acta Photonica Sinica, 2015, 44(9): 0923004.
毛洪艳, 许红梅, 夏良平, 等. 大面积低损耗薄膜衬底太赫兹偏振片[J]. 光子学报, 2015, 44(9): 0923004.

【5】Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

【6】Novoselov KS, Fal′ko VI, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

【7】Docherty C J, Johnston M B. Terahertz properties of graphene[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(8): 797-815.

【8】Zhou Y X. Study on tunable conductance characteristics and application of graphene in terahertz band[D]. Xi′an: Northwest University, 2014: 20-23.
周译玄. 太赫兹波段石墨烯可调电导特性与应用研究[D]. 西安: 西北大学, 2014: 20-23.

【9】Maeng I, Lim S, Chae S J, et al. Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy[J]. Nano Letters, 2012, 12(2): 551-555.

【10】Yang C H, Wang L, Chen Y Y, et al. Optical absorption property of graphene PN junction modulated by voltage in terahertz region[J]. Laser & Optoelectronics Progress, 2017, 54(11): 112601.
杨翠红, 王璐, 陈云云, 等. 电压调制的石墨烯PN结在太赫兹区的光吸收特性[J]. 激光与光电子学进展, 2017, 54(11): 112601.

【11】Zhou Y X, Xu X L, Hu F R, et al. Graphene as broadband terahertz antireflection coating[J]. Applied Physics Letters, 2014, 104(5): 051106.

【12】Weis P, Garcia-Pomar J L, Hh M, et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6(10): 9118-9124.

【13】Zhou Y X, Xu X L, Fan H M, et al. Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene[J]. Physical Chemistry Chemical Physics, 2013, 15(14): 5084-5090.

【14】Sensale-Rodriguez B, Yan R S, Kelly M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3: 780.

【15】Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238.

【16】Geng L, Xie Y N, Yuan Y. Graphene-based antenna with reconfigurable radiation pattern in terahertz[J]. Laser & Optoelectronics Progress, 2017, 54(3): 031602.
耿莉, 谢亚楠, 原媛. 基于石墨烯的太赫兹方向图可重构天线[J]. 激光与光电子学进展, 2017, 54(3): 031602.

【17】Gao H, Yan F P, Tan S Y, et al. Design of ultra-thin broadband terahertz metamaterial absorber based on patterned graphene[J]. Chinese Journal of Lasers, 2017, 44(7): 0703024.
高红, 延凤平, 谭思宇, 等. 基于有图案石墨烯的超薄宽带太赫兹超材料吸收体的设计[J]. 中国激光, 2017, 44(7): 0703024.

【18】Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10): 630-634.

【19】Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2): 1086-1101.

【20】Yan H G, Li X S, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.

【21】Horng J, Chen C F, Geng B S, et al. Drude conductivity of Dirac fermions in graphene[J]. Physical Review B, 2011, 83(16): 165113.

【22】Yao Z H, Huang Y Y, Wang Q, et al. Tunable surface-plasmon-polariton-like modes based on graphene metamaterials in terahertz region[J]. Computational Materials Science, 2016, 117: 544-548.

【23】Hanson G W. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

引用该论文

Cao Jianguo,Zhou Yixuan. Polarization Modulation of Terahertz Wave by Graphene Metamaterial with Grating Structure[J]. Laser & Optoelectronics Progress, 2018, 55(9): 092501

曹建国,周译玄. 栅状结构石墨烯超材料的太赫兹波偏振调制[J]. 激光与光电子学进展, 2018, 55(9): 092501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF