首页 > 论文 > 激光与光电子学进展 > 55卷 > 9期(pp:91901--1)

热效应作用下的微环克尔光频梳

Kerr Optical Frequency Comb Based on Micro-Ring Resonator with Thermal Effect

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

目前微环产生光频梳的理论分析方法主要有两种:非线性耦合模理论和非线性Lugiato-Lefever方程 (LLE)模型。这些理论研究一般只考虑了色散和光学非线性效应, 忽略了强抽运光作用下微环谐振腔中热效应的影响。通过对微环热效应的分析, 在非线性LLE的基础上加入热效应作用的相移对方程进行修正, 仿真了固定和调节初失谐量两种情况下耗散腔光孤子/光频梳在微环谐振腔内产生的整个过程, 分析了两种不同方式产生克尔光频梳的机理, 并对比分析了两种方式下克尔光频梳的性能和造成性能差异的原因。

Abstract

At present, two theoretical analysis methods, nonlinear coupled-mode theory and nonlinear Lugiato-Lefever equation (LLE) model, are used to investigate the generation of Kerr optical frequency comb in micro-ring resonators. In previous theoretical studies, only dispersion and optical nonlinear effects were generally considered, and the thermal effects in micro-ring resonators under strong pumping were ignored. In this paper, in view of the thermal effect in the micro-ring resonator induced by the traveling light beam, the nonlinear LLE is modified, and based on the modified equation, the generation of Kerr optical frequency comb is investigated for the two cases of fixing and adjusting the initial detuning. Generation mechanisms of the Kerr optical frequency comb based on these two different ways are analyzed. The characteristics of the Kerr optical frequency comb generated by the two ways are compared, and the reason that causes their difference is investigated.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop55.091901

所属栏目:非线性光学

基金项目:国家自然科学基金(61501088)

收稿日期:2018-03-09

修改稿日期:2018-04-09

网络出版日期:2018-04-16

作者单位    点击查看

何明芳:电子科技大学光电科学与工程学院, 四川 成都 611731
陈开鑫:电子科技大学光电科学与工程学院, 四川 成都 611731
胡哲峰:电子科技大学光电科学与工程学院, 四川 成都 611731

联系人作者:陈开鑫(chenkx@uestc.edu.cn); 何明芳(hmf_imp@163.com);

【1】Qin M, Wu J H, Duan C Y. Study of terabit transmission experiment based on CO-OFDM with the optical fiber combs[J]. Optical Communication Technology, 2016, 40(3): 52-55.
覃勐, 吴锦虹, 段春艳. 基于光频CO-OFDM的太比特传输实验研究[J]. 光通信技术, 2016, 40(3): 52-55.

【2】Wu X J, Li Y, Wei H Y, et al. Femtosecond optical frequency combs for precision measurement applications[J]. Laser & Optoelectronics Progress, 2012, 49(3): 030001.
吴学健, 李岩, 尉昊赟, 等. 飞秒光学频率梳在精密测量中的应用[J]. 激光与光电子学进展, 2012, 49(3): 030001.

【3】Zhuge J C, Xing S J, Gao J S. Theoretical analysis of arbitrary and absolute length measurement by using femtosecond optical frequency comb[J]. Acta Optica Sinica, 2016, 36(1): 0112004.
诸葛晶昌, 邢书剑, 高建树. 飞秒光频梳的任意长绝对测距理论分析[J]. 光学学报, 2016, 36(1): 0112004.

【4】Chembo Y K. Kerr optical frequency combs: theory, applications and perspectives[J]. Nanophotonics, 2016, 5(2): 214-230.

【5】Li M F, Wang J H, He Y, et al. Progress in theoretical studies on the generation of micro-ring resonator-based optical frequency combs[J]. Study on Optical Communications, 2015(5): 38-40.
李梅凤, 王景灏, 何岩, 等. 基于微环谐振腔产生光频梳的理论研究进展[J]. 光通信研究, 2015(5): 38-40.

【6】Wang Y W, Zhang M M, Xia L, et al. Progress in dispersion control of micro-ring resonator-based optical frequency comb generation[J]. Laser & Optoelectronics Progress, 2014, 51(6): 060001.
王元武, 张敏明, 夏历, 等. 基于微环谐振腔产生光频梳的色散控制的研究进展[J]. 激光与光电子学进展, 2014, 51(6): 060001.

【7】Chembo Y K, Yu N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators[J]. Physical Review A, 2010, 82(3): 033801.

【8】Carmon T, Yang L, Vahala K J. Dynamical thermal behavior and thermal self-stability of microcavities [J]. Optics Express, 2004, 12(20): 4724-4750.

【9】Chembo Y K, Strekalov D V, Yu N. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators [J]. Physical Review Letters, 2010, 104(10): 103902.

【10】Coen S, Randle H G, Sylvestre T, et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model [J]. Optics Letters, 2013, 38(1): 37-39.

【11】Leo F, Coen S, Kockaert P, et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer[J]. Nature Photonics, 2010, 4(7): 471-476.

【12】Hansson T, Wabnitz S. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons[J]. Journal of the Optical Society of America B, 2015, 32(7): 1259-1261.

【13】Okawachi Y, Saha K, Levy J S, et al. Octave-spanning frequency comb generation in a silicon nitride chip[J]. Optics Letters, 2011, 36(17): 3398-3400.

【14】Agrawal G P. Nonlinear fiber optics[M]. San Diego: Academic Press, 2007.

【15】Lamont M R E, Okawachi Y, Gaeta A L. Route to stabilized ultrabroad band microresonator-based frequency combs[J]. Optics Letters, 2013, 38(18): 3478-3481.

【16】Zhou H. Fundamental and application studies of nonlinear optics in three types of optical waveguides and structures[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 45-46.
周恒. 几类光波导中的非线性光学基础研究及应用探索[D]. 成都: 电子科技大学, 2015: 45-46.

引用该论文

He Mingfang,Chen Kaixin,Hu Zhefeng. Kerr Optical Frequency Comb Based on Micro-Ring Resonator with Thermal Effect[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091901

何明芳,陈开鑫,胡哲峰. 热效应作用下的微环克尔光频梳[J]. 激光与光电子学进展, 2018, 55(9): 091901

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF