首页 > 论文 > 中国激光 > 45卷 > 9期(pp:903001--1)

二芳基乙烯的光学性质及其在超分辨光存储中的应用

Optical Properties of Dithienylethene and Its Applications in Super-Resolution Optical Storage

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用开环态双光子吸收转化荧光光谱、荧光淬灭光谱等探究了二芳基乙烯的光学记录特性及参数, 得到其非线性吸收系数为3.46×10-13 m/W, 双光子吸收转化的阈值功率密度为107.36 GW/cm2, 荧光淬灭的阈值功率密度为2.89 GW/cm2。基于所得到的测试参数, 理论计算出其在超分辨光存储中的分辨率可达60.0 nm, 并设计了一种基于二芳基乙烯的双光子双光束超分辨光存储信息记录和读出方法。研究结果表明, 二芳基乙烯具有光诱导-光抑制、非线性吸收及荧光淬灭等特性, 是一种优异的超分辨光存储备选材料。

Abstract

The optical recording properties and parameters of dithienylethene are investigated by the fluorescence spectrum conversed by ring-opening two-photon absorption and the fluorescence-quenching spectrum. Its nonlinear absorption coefficient is 3.46×10-13 m·W-1, the power density threshold of the two-photon absorption conversion is 107.36 GW·cm-2, and the power density threshold of the fluorescence quenching is 2.89 GW·cm-2. Based on these measurement parameters, a resolution of 60.0 nm in super-resolution optical storage is theoretically calculated and obtained, and a kind of recording and reading method for the information of the two-photon-dual-beam super-resolution optical storage based on diarylethene is designed. The results indicate that, the dithienylethene possesses the characteristics such as photo-induction-photo-inhibition, nonlinear absorption and fluorescence-quenching, and is an excellent optional material for the super-resolution optical storage.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN204

DOI:10.3788/CJL201845.0903001

所属栏目:材料与薄膜

基金项目:上海市科学技术委员会科研计划(16DZ1100302,16511101600)

收稿日期:2018-02-09

修改稿日期:2018-03-19

网络出版日期:2018-04-08

作者单位    点击查看

刘铁诚:中国科学院上海光学精密机械研究所激光与光电子功能材料中心, 上海 201800中国科学院大学, 北京 100049
张力:中国科学院上海高等研究院宏观量子现象与应用中心, 上海 201210
孙静:中国科学院上海高等研究院宏观量子现象与应用中心, 上海 201210
钟羽武:中国科学院化学研究所光化学实验室, 北京 100190
王中阳:中国科学院上海高等研究院宏观量子现象与应用中心, 上海 201210
郭新军:中国科学院上海光学精密机械研究所激光与光电子功能材料中心, 上海 201800
阮昊:中国科学院上海光学精密机械研究所激光与光电子功能材料中心, 上海 201800

联系人作者:阮昊(ruanhao@mail.shcnc.ac.cn); 刘铁诚(liutiecheng7@163.com);

【1】Gu M, Li X P, Cao Y Y. Optical storage arrays: A perspective for future big data storage[J]. Light: Science & Applications, 2014, 3(5): 1-11.

【2】Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567-570.

【3】Xu D Y. Super-density and super-speed optical data storage[M]. Shenyang: Liaoning Scienceand Technology Publishing House, 2009: 2-6, 223-379.
徐端颐. 超高密度超快速光信息存储[M]. 沈阳: 辽宁科学技术出版社, 2009: 2-6, 223-379.

【4】Ruan H, Bu C Y. Multilayer optical storage for big data center: By pre-layered scheme[J]. SPIE, 2013, 8913: 891308.

【5】Yu W T, Ji Z H, Dong D S, et al. Super-resolution deep imaging with hollow bessel beam STED microscopy[J]. Laser & Photonics Reviews, 2016, 10(1): 147-152.

【6】Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences, 2000, 97(15): 8206-8210.

【7】Klar T A, Wollhofen R, Jacak J. Sub-abbe resolution: From STED microscopy to STED lithography[J]. Physica Scripta, 2014, 2014: 014049.

【8】Peng D M, Fu Z F, Xu P Y. Fluorescent proteins and super-resolution microscopy[J]. Acta Optica Sinica, 2017, 37(3): 0318008.
彭鼎铭, 付志飞, 徐平勇. 荧光蛋白与超分辨显微成像[J]. 光学学报, 2017, 37(3): 0318008.

【9】Li C, Yan H, Zhao L X, et al. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio[J]. Nature Communications, 2014, 5: 5709.

【10】Li C. The synthesis, properties and applications of photoswitchable fluorescent diarylethenes[D]. Wuhan: Huazhong University of Science and Technology, 2015: 1-2.
李冲. 二芳基乙烯类荧光分子开关的合成、性质及应用[D]. 武汉: 华中科技大学, 2015: 1-2.

【11】Fukaminato T. Single-molecule fluorescence photoswitching: Design and synthesis of photoswitchable fluorescent molecules[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011, 12(3): 177-208.

【12】Zhu M Q, Zhang G F, Li C, et al. Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells[J]. Journal of the American Chemical Society, 2011, 133(2): 365-372.

【13】Gust D, Andreasson J, Pischel U, et al. Data and signal processing using photochromic molecules[J]. Chemical Communications, 2012, 48(14): 1947-1957.

【14】Hu H, Pei J, Xu D Y, et al. Multi-level optical storage in photochromic diarylethene optical disc[J]. Optical Materials, 2006, 28(8/9): 904-908.

【15】Fan M G, Yao J N. Optical functional materials science[M]. Beijing: Science Press, 2013: 86-97, 164-172.
樊美公, 姚建年. 光功能材料科学[M]. 北京: 科学出版社, 2013: 86-97, 164-172.

【16】Takagi Y, Kunishi T, Katayama T, et al. Photoswitchable fluorescent diarylethene derivatives with short alkyl chain substituents[J]. Photochemical & Photobiological Sciences, 2012, 11(11): 1661-1665.

【17】Roubinet B, Bossi M L, Alt P, et al. Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution resolft microscopy[J]. Angewandte Chemie, 2016, 55(49): 15429-15433.

【18】Roubinet B, Weber M, Shojaei H, et al. Fluorescent photoswitchable diarylethenes for biolabeling and single-molecule localization microscopies with optical superresolution[J]. Journal of the American Chemical Society, 2017, 139(19): 6611-6620.

【19】Xu D Y, Hu H, He L, et al. Multi-wavelength and multi-level optical storage based on photochromic materials[J]. SPIE, 2005, 5966: 596607.

【20】Xu D Y. Multi-dimensional optical storage[M]. Beijing: Tsinghua University Press, 2017: 407-479.
徐端颐. 多维光学存储[M]. 北京: 清华大学出版社, 2017: 407-479.

【21】Qi G S, Xiao J X, Liu R, et al. Study on multi-wavelength photochromic storage of diarylethene[J]. Acta Physica Sinica, 2004, 53(4): 1076-1080.
齐国生, 肖家曦, 刘嵘, 等. 光致变色二芳基乙烯多波长光存储研究[J]. 物理学报, 2004, 53(4): 1076-1080.

【22】Hu H, Qi G S, Xu D Y. Experiment study of multilevel data storage based on photochromism[J]. Chinese Journal of Lasers, 2004, 31(8): 951-954.
胡华, 齐国生, 徐端颐. 基于光致变色原理的多阶存储实验研究[J]. 中国激光, 2004, 31(8): 951-954.

【23】Uno K, Niikura H, Morimoto M, et al. In situ preparation of highly fluorescent dyes upon photoirradiation[J]. Journal of the American Chemical Society, 2011, 133(34): 13558-13564.

【24】Grotjohann T, Testa I, Leutenegger M, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 2011, 478(13): 204-208.

【25】Ajami A, Husinsky W, Tromayer M, et al. Measurement of degenerate two-photon absorption spectra of a series of developed two-photon initiators using a dispersive white light continuum Z-scan[J]. Applied Physics Letters, 2017, 111(7): 071901.

【26】Wang Y C, Yan Y L, Liu D J, et al. Photochromism induced nonlinear optical absorption enhancement and ultrafast responses of several dithienylethene compounds[J]. Journal of Applied Physics, 2015, 118(18): 183104.

【27】Cai X L, Wei J S, Yan H. Optical nonlinear characteristics of amorphous InSb thin film and its super-resolution effect[J]. Acta Optica Sinica, 2013, 33(9): 0931002.
蔡晓林, 魏劲松, 严辉, 等. 非晶态InSb薄膜的光学非线性特性及其超分辨效应[J]. 光学学报, 2013, 33(9): 0931002.

【28】Wei J S, Liu J, Jiao X B. Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics[J]. Applied Physics Letters, 2009, 95(24): 241105.

【29】Chen Y Q, Wang J H. Laser principle (the second edition)[M]. Hangzhou: Zhejiang University Press, 2010: 106-107.
陈钰清, 王静环. 激光原理(第二版)[M]. 杭州: 浙江大学出版社, 2010: 106-107.

【30】Xu Q, Pan F, Huang L, et al. Analyzing of the optical field of vectorial structure of Laguerre-Gaussian beams by angular spectrum method[J]. Chinese Journal of Lasers, 2017, 44(8): 0805001.
徐强, 潘丰, 黄莉, 等. 角谱法分析拉盖尔高斯光束矢量远场特性[J]. 中国激光, 2017, 44(8): 0805001.

【31】Andrew T L, Tsai H Y, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning[J]. Science, 2009, 324(5929): 917-921.

【32】Cao Y Y, Gan Z S, Jia B H, et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J]. Optics Express, 2011, 19(20): 19486-19494.

【33】Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

引用该论文

Liu Tiecheng,Zhang Li,Sun Jing,Zhong Yuwu,Wang Zhongyang,Guo Xinjun,Ruan Hao. Optical Properties of Dithienylethene and Its Applications in Super-Resolution Optical Storage[J]. Chinese Journal of Lasers, 2018, 45(9): 0903001

刘铁诚,张力,孙静,钟羽武,王中阳,郭新军,阮昊. 二芳基乙烯的光学性质及其在超分辨光存储中的应用[J]. 中国激光, 2018, 45(9): 0903001

被引情况

【1】吴晨雪,胡巧,赵苗,苏文静,郭新军,阮昊. 磁光电混合存储技术研究综述. 激光与光电子学进展, 2019, 56(7): 70003--1

【2】苏文静,胡巧,赵苗,原续鹏,郭新军,阮昊. 光存储技术发展现状及展望. 光电工程, 2019, 46(3): 1-7

【3】骆志军,刘亚男,陈梦林,邓琳,甘棕松. 面向产业化应用的双光束超分辨数据存储技术. 光电工程, 2019, 46(3): 1-7

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF