首页 > 论文 > 中国激光 > 45卷 > 9期(pp:911001--1)

可调谐二极管激光吸收光谱技术的应用研究进展

Research Progress on the Application of Tunable Diode Laser Absorption Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着半导体激光器的发展, 可调谐二极管激光吸收光谱(TDLAS)技术有了巨大的进步, 应用领域迅速扩大。已经有超过1000种TDLAS仪器应用于连续排放监测以及工业过程控制等领域, 每年全球出售的TDLAS气体检测仪器占据了红外气体传感检测仪器总数的5%~10%。运用TDLAS技术, 已经完成了几十种气体分子的高选择性、高灵敏度的连续在线测量, 实现了不同领域气体浓度、温度、流速、压力等参数的高精度探测, 为各领域的发展提供了重要的技术保障。本文综述了TDLAS技术气体检测的原理以及最近的应用研究进展, 主要从大气环境监测、工业过程监测、深海溶解气体探测、人体呼吸气体测量、流场诊断以及液态水测量六个应用领域进行介绍。

Abstract

With the development of semiconductor lasers, tunable diode laser absorption spectroscopy (TDLAS) technology has achieved great development and rapid expansion of application fields. There have been more than 1000 kinds of TDLAS instruments, which are applied to continuous emission monitoring and industrial process control fields. According to the statistics, 5%-10% of all infrared gas sensors based on TDLAS technology are sold in the world every year. Dozens of gases are measured on-line with high sensitivity and precision by the TDLAS technology, and gas parameters, including concentration, temperature, velocity and pressure, are also determined, which provide important technical support for the development of various fields. This article reviews the principle and recent research of TDLAS technology, with introduction from six application fields, such as atmospheric environmental monitoring, industrial process monitoring, deep sea dissolved gases detection, breath analysis, flow field diagnosis, and liquid water measurement.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.1

DOI:10.3788/cjl201845.0911001

所属栏目:“激光吸收光谱技术及应用新进展”专题

基金项目:国家重点研发计划(2016YFC0302300)、中国科学院科技创新基金(CXJJ-16M267)

收稿日期:2018-04-02

修改稿日期:2018-05-02

网络出版日期:2018-05-22

作者单位    点击查看

聂伟:中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
阚瑞峰:中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 安徽 合肥 230031
杨晨光:中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 安徽 合肥 230031
陈兵:中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 安徽 合肥 230031
许振宇:中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 安徽 合肥 230031
刘文清:中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 安徽 合肥 230031

联系人作者:刘文清(wqliu@aiofm.ac.cn)

【1】Dong F Z, Kan R F, Liu W Q, et al. Tunable diode laser absorption spectroscopic technology and its applications in air quality monitoring[J]. Chinese Journal of Quantum Electronics, 2005, 22(3): 315-325.
董凤忠, 阚瑞峰, 刘文清, 等. 可调谐二极管激光吸收光谱技术及其在大气质量监测中的应用[J]. 量子电子学报, 2005, 22(3): 315-325.

【2】Organization W H, Europe R O F. WHO Guidelines for indoor air quality: selected pollutants[M]. Geneva: World Health Organization, 2010.

【3】Wang H, Li Y, Gao J, et al. Characteristics of air pollution and evaluation of the effects of air quality assurance measures in Shijiazhuang city during the 2014 APEC Meeting[J]. Research of Environmental Science, 2016, 29(2): 164-174.
王浩, 李轶, 高健, 等. APEC会议期间石家庄市大气污染特征及空气质量保障措施效果评估[J]. 环境科学研究, 2016, 29(2): 164-174.

【4】Li H M, Wang Q G, Yang M, et al. Chemical characterization and source apportionment of PM 2.5 aerosols in a megacity of Southeast China[J]. Atmospheric Research, 2016, 181: 288-299.

【5】Reidl-Leuthner C, Ofner J, Tomischko W, et al. Simultaneous open-path determination of road side mono-nitrogen oxides employing mid-IR laser spectroscopy[J]. Atmospheric Environment, 2015, 112: 189-195.

【6】Liu S. Towards aerial natural gas leak detection system based on TDLAS[J]. Proceedings of SPIE, 2014, 9299: 92990X.

【7】Frish M B. Current and emerging laser sensors for greenhouse gas sensing and leak detection[J]. Proceedings of SPIE, 2014, 9101: 91010H.

【8】Li F, Yu X L, Gu H, et al. Measurement of temperature, velocity and water vapor concentration in a scramjet combustor based on near-infrared diode laser absorption[C]∥17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, April 11-14, 2011. San Francisco, California. American Institute of Aeronautics and Astronautics, c2013: 167-185.

【9】Bolshov M A, Kuritsyn Y A, Romanovskii Y V. Tunable diode laser spectroscopy as a technique for combustion diagnostics[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 106: 45-66.

【10】Wang F, Wu Q, Huang Q X, et al. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology[J]. Optics Communications, 2015, 346: 53-63.

【11】Owen F K, Owen A K. Measurement and assessment of wind tunnel flow quality[J]. Progress in Aerospace Sciences, 2008, 44(5): 315-348.

【12】Valentine D L, Kastner M, Wardlaw G D, et al. Biogeochemical investigations of marine methane seeps, hydrate ridge, oregon[J]. Journal of Geophysical Research: Biogeosciences, 2015, 110(G2): 1619-1622.

【13】Wang C J, Sahay P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors, 2009, 9(10): 8230.

【14】Porter J M, Jeffries J B, Hanson R K. Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness[J]. Applied Physics B, 2010, 102(2): 345-355.

【15】obiński R, Schaumlffel D, Szpunar J. Mass spectrometry in bioinorganic analytical chemistry[J]. Mass Spectrometry Reviews, 2006, 25(2): 255-289.

【16】Kawamura Y, Iwai Y, Yamanishi T, et al. Analysis of hydrogen isotopes with a micro gas chromatograph[J]. Fusion Engineering & Design, 2000, 49(50): 855-861.

【17】Gan T, Hu S S. Electrochemical sensors based on graphene materials[J]. Microchimica Acta, 2011, 175(1/2): 1-19.

【18】Liu W Q, Cui Z C, Dong F Z, et al. Optical and spectroscopic techniques for environmental pollution monitoring[J]. Optoelectronic Technology & Information, 2002, 15(5): 1-12.
刘文清, 崔志成, 董凤忠. 环境污染监测的光学和光谱学技术[J]. 大气与环境光学学报, 2002, 15(5): 1-12.

【19】Stone D, Whalley L K, Ingham T, et al. Measurement of OH reactivity by laser flash photolysis coupled with laser-induced fluorescence spectroscopy[J]. Atmospheric Measurement Techniques, 2016, 9(7): 1-22.

【20】Li H J, Hanson R K, Jeffries J B. Diode laser-induced infrared fluorescence of water vapor[J]. Measurement Science & Technology, 2004, 15(7): 1285.

【21】Depciuch J, Kaznowska E, Zawlik I, et al. Application of Raman spectroscopy and infrared spectroscopy in the identification of breast cancer[J]. Applied Spectroscopy, 2016, 70(2): 251-263.

【22】Larkin P. Infrared and Raman spectroscopy : principles and spectral interpretation[M]. Amsterdam: Elsevier, 2011.

【23】Hammer S, Griffith D W T, Konrad G, et al. Assessment of a multi-species in-situ FTIR for precise atmospheric greenhouse gas observations[J]. Atmospheric Measurement Techniques Discussions, 2013, 6(5): 1153-1170.

【24】Li X X, Wang Z, Xu L, et al. Study on temperature dependence of the greenhouse gases and carbon isotope ratio spectral analysis[J]. Infrared and Laser Engineering, 2015, 44(4): 1178-1185.
李相贤, 王振, 徐亮, 等. 温室气体及碳同位素比值傅里叶变换红外光谱分析的温度依赖关系研究[J]. 红外与激光工程, 2015, 44(4): 1178-1185.

【25】Silver J A, Chen S J. Carbon monoxide sensor for combustion feedback control[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit, January 9-12, 2006, Reno, Nevada, USA. American Institute of Aeronautics and Astronautics, c2006: 748.

【26】Novelli P C. CO in the atmosphere: measurement techniques and related issues[J]. Chemosphere-Global Change Science, 1999, 1(1/2/3): 115-126.

【27】Zhang J F, Pan S Q, Lin X L, et al. Research on on-line calibration based photoacoustic spectrometry system for monitoring the concentration of CO2 in atmosphere[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 1-5.
张建锋, 潘孙强, 林晓露, 等. 可在线校准的大气CO2浓度光声光谱监测系统研究[J]. 光谱学与光谱分析, 2016, 36(1): 1-5.

【28】Ma Y F, He Y, Yu X, et al. Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy[J]. Acta Physica Sinica, 2016, 65(6): 060701.
马欲飞, 何应, 于欣, 等. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究[J]. 物理学报, 2016, 65(6): 060701.

【29】Wojtas J, Gluszek A, Hudzikowski A, et al. Mid-infrared trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy[J]. Sensors, 2017, 17(3): 513.

【30】Edner H, Sunesson A, Svanberg S, et al. Differential optical absorption spectroscopy system used for atmospheric mercury monitoring[J]. Applied Optics, 1986, 25(3): 403-409.

【31】Meier A C, Schnhardt A, Bsch T, et al. High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT[J]. Atmospheric Measurement Techniques, 2017, 10(5): 1-42.

【32】Shen L L, Qin M, Sun W, et al. Cruise observation of SO2, NO2 and benzene with mobile portable DOAS in the industrial park[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1936-1940.
沈兰兰, 秦敏, 孙伟, 等. 基于车载便携式DOAS对工业园区SO2, NO2和苯的走航观测[J]. 光谱学与光谱分析, 2016, 36(6): 1936-1940.

【33】Comerón A, Muoz-porcar C, Rocadenbosch F, et al. Current research in lidar technology used for the remote sensing of atmospheric aerosols[J]. Sensors, 2017, 17(6): 1450.

【34】Liu S, Luo Z, Tan Z, et al. Gas trace detection with cavity enhanced absorption spectroscopy: a review of its process in the field[J]. Proceedings of the SPIE, 2016, 10030: 100301C.

【35】Amiot C, Aalto A, Ryczkowski P, et al. Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source[J]. Applied Physics Letters, 2017, 111(6): 061103.

【36】Hu R Z, Wang D, Xie P H, et al. Diode laser cavity ring-down spectroscopy for atmospheric NO2 measurement[J]. Acta Optica Sinica, 2016, 36(2): 0230006.
胡仁志, 王丹, 谢品华, 等. 二极管激光腔衰荡光谱技术测量大气NO2[J]. 光学学报, 2016, 36(2): 0230006.

【37】Banik G D, Som S, Maity A, et al. An EC-QCL based N2O sensor at 5.2 μm using cavity ring-down spectroscopy for environmental applications[J]. Analytical Methods, 2017, 9(15): 2315-2320.

【38】Yao L, Liu W Q, Liu J G, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese Journal of Lasers, 2015, 42(2): 0215003.
姚路, 刘文清, 刘建国, 等. 基于TDLAS的长光程环境大气痕量CO监测方法研究[J]. 中国激光, 2015, 42(2): 0215003.

【39】Sur R, Sun K, Jeffries J B, et al. Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier[J]. Fuel, 2015, 150: 102-111.

【40】Xia H, Kan R, Xu Z, et al. Measurements of axisymmetric temperature and H2O concentration distributions on a circular flat flame burner based on tunable diode laser absorption tomography[J]. Proceedings of SPIF, 2016, 10156: 101560S.

【41】Zhang Y W. Molecular spectroscopy[M]. Hefei: University of Science and Technology of China Press, 1988.
张允武. 分子光谱学[M]. 合肥: 中国科技大学出版社, 1988.

【42】Rothman L S, Gordon I E, Bablkov Y, et al. The HITRAN 2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130(11): 4-50.

【43】Rothman L S, Gordon I E, Barber R J, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2139-2150.

【44】Jacquinet-Husson N, Scott N A, Chédin A, et al. The GEISA spectroscopic database: current and future archive for earth and planetary atmosphere studies[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(6): 1043-1059.

【45】Mondelain D, Chelin P, Valentin A, et al. Line profile study by diode laser spectroscopy in the 12CH4 ν2+ν4 band[J]. Journal of Molecular Spectroscopy, 2005, 233(1): 23-31.

【46】Wang M R, Cai T D. Theoretical and experimental study on line intensities of CO2 and CO transitions near 1.5μm at high temperatures[J]. Acta Physica Sinica, 2015, 64(21): 213301.
王敏锐, 蔡廷栋. 1.5 μm处CO2与CO高温线强的实验分析与理论计算[J]. 物理学报, 2015, 64(21): 213301.

【47】Ding Y, Macko P, Romanini D, et al. High sensitivity CW-cavity ringdown and Fourier transform absorption spectroscopies of 13CO2[J]. Journal of Molecular Spectroscopy, 2004, 226(2): 146-160.

【48】Pogány A, Ott O, Werhahn O, et al. Towards traceability in CO2, line strength measurements by TDLAS at 2.7 μm[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 130: 147-157.

【49】Pogány A, Klein A, Ebert V. Measurement of water vapor line strengths in the 1.4-2.7 μm range by tunable diode laser absorption spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 165: 108-122.

【50】Nie W, Kan R F, Xu Z Y, et al. Measurements of line intensities for some lines of ammonia in 6611-6618 cm-1[J]. Acta Physica Sinica, 2017, 66(5): 054207.
聂伟, 阚瑞峰, 许振宇, 等. 6611-6618 cm-1之间氨气光谱线强的测量[J]. 物理学报, 2017, 66(5): 054207.

【51】Nie W, Kan R F, Xu Z Y, et al. Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2017, 66(20): 204204.
聂伟, 阚瑞峰, 许振宇, 等. 基于TDLAS技术的水汽低温吸收光谱参数测量[J]. 物理学报, 2017, 66(20): 204204.

【52】Wang G S, Cai T D, Wang L, et al. Measurement of ethane spectrum with high resolution near 1.65 μm based on TDLAS[J]. Journal of Atmospheric and Environmental Optics, 2009, 4(1): 38-45.
王贵师, 蔡廷栋, 汪磊, 等. 基TDLAS技术1.65 μm 附近乙烷分子高分辨吸收光谱测量[J]. 大气与环境光学学报, 2009, 4(1): 38-45.

【53】Leleux D P. Novel laser-based gas sensors for trace gas detection in a spacecraft habitat[D]. Houston: Rice University, 2002.

【54】Humlíek J. An efficient method for evaluation of the complex probability function: The Voigt function and its derivatives[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1979, 21(4): 309-313.

【55】Ngo N H, Lisak D, Tran H, et al. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 129(11): 89-100.

【56】Wehr R, Ciuryo R, Vitcu A, et al. Dicke-narrowed spectral line shapes of CO in Ar: experimental results and a revised interpretation[J]. Journal of Molecular Spectroscopy, 2006, 237(1): 54-68.

【57】Berman P R. Speed-dependent collisional width and shift parameters in spectral profiles[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 1972, 12(9): 1331-1342.

【58】Lepère M. Line profile study with tunable diode laser spectrometers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(14): 3249-3258.

【59】Goldenstein C S, Hanson R K. Diode-laser measurements of linestrength and temperature-dependent lineshape parameters for H2O transitions near 1.4 μm using Voigt, Rautian, Galatry, and speed-dependent Voigt profiles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 152: 127-139.

【60】Goldenstein C S, Jeffries J B, Hanson R K. Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2- perturbed H2O transitions near 2474 and 2482 nm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130(11): 100-111.

【61】Tran H, Ngo N H, Hartmann J M. Efficient computation of some speed-dependent isolated line profiles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 129(11): 199-203.

【62】Weldon V, Mcinerney D, Phelan R, et al. Characteristics of several NIR tunable diode lasers for spectroscopic based gas sensing: a comparison[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 63(5): 1013-1020.

【63】Posthumus J, Deninger A, Lison F. Spectral properties and spectroscopic applications of near-IR DFB diode lasers[C]∥5th International Conference on Tunable Diodelaser Spectroscopy, July 11-15, 2005, Florence, Italy. New York: IEEE, 2005: 208.

【64】Seufert J, Fischer M, Legge M, et al. DFB laser diodes in the wavelength range from 760 nm to 2.5 μm[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(14): 3243-3247.

【65】Chen F, James S, Tatam R. A 1.65 μm region external cavity laser diode using an InP gain chip and a fibre Bragg grating[J]. Proceedings of SPIE, 2012, 8421: 84215F.

【66】Jiménez A, Milde T, Staacke N, et al. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range[J]. Applied Physics B, 2017, 123(7): 207.

【67】Sonnenfroh D M, Allen M G. Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser[J]. Applied Optics, 1997, 36(15): 3298-3300.

【68】Jewell J L, Harbison J P, Scherer A, et al. Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization[J]. IEEE Journal of Quantum Electronics, 1991, 27(6): 1332-1346.

【69】Shau, R, Ortsiefer, M, Bohm, G, et al. InP-based vertical-cavity surface-emitting lasers for 1.5-1.8 μm wavelength range[C]∥IEEE 17th International Conference on Semiconductor Laser, 2000: 153-154.

【70】Hofmann W, Amann M C. Long-wavelength vertical-cavity surface-emitting lasers for high-speed applications and gas sensing[J]. IET Optoelectronics, 2008, 2(3): 134-142.

【71】Ortsiefer M, Bohm G, Grau M, et al. Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength[J]. Electronics Letters, 2006, 42(11): 640-641.

【72】Totschnig G, Lackner M, Shau R, et al. 1.8 μm vertical-cavity surface-emitting laser absorption measurements of HCl, H2O and CH4[J]. Measurement Science and Technology, 2003, 14(4): 472-478.

【73】Weldon V, O′ Gorman J, Pérez-Camacho J J, et al. Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region[J]. Infrared Physics & Technology, 1997, 38(6): 325-329.

【74】Wehe S, Sonnenfroh D, Allen M, et al. Measurements of trace pollutants in combustion flows using room-temperature, mid-IR quantum cascade lasers[C]∥40th AIAA Aerospace Sciences Meeting and Exhibit, January 14-17, 2002, Reno, Nevada. USA, American Institute of Aeronautics and Astronautics. c2002: 0824.

【75】Hofstetter D, Beck M, Aellen T, et al. Continuous wave operation of a 9.3 μm quantum cascade laser on a Peltier cooler[J]. Applied Physics Letters, 2001, 78(14): 1964-1966.

【76】Li J S, Parchatka U, Fischer H. Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO[J]. Sensors and Actuators B: Chemical, 2013, 182(3): 659-667.

【77】Yu Y J, Sanchez N P, Griffin R J, et al. CW EC-QCL-based sensor for simultaneous detection of H2O, HDO, N2O and CH4 using multi-pass absorption spectroscopy[J]. Optics Express, 2016, 24(10): 10391-10401.

【78】Cao Y C, Sanchez N P, Jiang W Z, et al. Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser[J]. Optics Express, 2015, 23(3): 2121-2132.

【79】Olafsen L J, Aifer E H, Vurgaftman I, et al. Near-room-temperature mid-infrared interband cascade laser[J]. Applied Physics Letters, 1998, 72(19): 2370-2372.

【80】Vurgaftman I, Canedy C L, Kim C S, et al. Mid-infrared interband cascade lasers operating at ambient temperatures[J]. New Journal of Physics, 2009, 11(12): 125015.

【81】Allan D W. Statistics of atomic frequency standards[J]. Proceedings of the IEEE, 1966, 54(2): 221-230.

【82】Zen L Z, Lu Y H, Kan R F, et al. Electronic design of a high-stable low-drift diode laser driver[J]. Chinese Journal of Quantum Electronics, 2014, 31(5): 569-575.
曾利忠, 陆亦怀, 阚瑞峰, 等. 高稳定低温漂半导体激光器驱动的电子学设计[J]. 量子电子学报, 2014, 31(5): 569-575.

【83】Yuan S, Kan R F, He Y B, et al. Laser temperature compensation used in tunable diode-laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2013, 40(5): 0515002.
袁松, 阚瑞峰, 何亚柏, 等. 可调谐半导体激光吸收光谱中激光器温度补偿[J]. 中国激光, 2013, 40(5): 0515002.

【84】Zhou X. Diode laser absorption sensors for combustion control[J]. Papers in Regional Science, 2005, 84(2): 183-199.

【85】Yang C, Liu J, Hu M, et al. Multi-QCLs based open-path sensor for atmospheric NO, NO2 and NH3 detections[C]∥Optics and Photonics for Energy and the Environment 2016, November 14-17, 2016, Leipzig, Germany. Fourier Transform Spectroscopy, c2016, JW4A. 26.

【86】Lackner M, Totschnig G, Winter F, et al. In situ laser measurements of CO and CH4 close to the surface of a burning single fuel particle[J]. Measurement Science & Technology, 2002, 13(10): 1545.

【87】Zhou X, Liu X, Jeffries J B, et al. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser[J]. Measurement Science and Technology, 2003, 14(8): 1459-1468.

【88】Southwest Sciences Incorporated. Gas Sensing Tutorial[EB/OL]. [2018-04-02]. http:∥www.swsciences.com/technology/sensors.html.

【89】Fuchs H, Dubé W P, Lerner B M, et al. A sensitive and versatile detector for atmospheric NO2 and NOx based on blue diode laser cavity ring-down spectroscopy[J]. Environmental Science & Technology, 2009, 43(20): 7831-7836.

【90】David S. Bomse, D. Christian Hovde, et al. Early fire sensing using near-IR diode laser spectroscopy[J]. Proceedings of the SPIE, 2002, 4817: 73-81.

【91】Martin P A. Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring[J]. Chemical Society Reviews, 2002, 31(4): 201-210.

【92】Frish M B, Green B D, Allen M G. Progress in reducing size and cost of trace gas analyzers based on tunable diode laser absorption spectroscopy[J]. Proceedings of SPIE, 2004, 5586: 76-82.

【93】Wang J, Huang W, Gu H T, et al. Gas temperature measurement with tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2007, 27(9): 1639-1642.
王健, 黄伟, 顾海涛, 等. 可调谐二极管激光吸收光谱法测量气体温度[J]. 光学学报, 2007, 27(9): 1639-1642.

【94】Tao B, Hu Z Y, Zhang Z R, et al. Measurement of temperature of high temperature transient flow field by TDLAS technique[C]∥National Symposium on Shock and Shock Tube(volume 2), July 14, 2010, Huangshan, Anhui. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2010: 30-33.
陶波, 胡志云, 张振荣, 等. TDLAS技术测量高温瞬态流场温度[C]∥第十四届全国激波与激波管学术会议论文集(下册), 2010年7月14号, 安徽黄山. 北京: 中国力学学会, 2010: 30-33

【95】Zhang G L, Liu J G, Kan R F, et al. Simulation studies of multi-line line-of-sight tunable-diode-laser absorption spectroscopy performance in measuring temperature probability distribution function[J]. Chinese Physics B, 2014, 23(12): 209-214.

【96】Xu Z Y, Liu W Q, Liu J G, et al. temperature measurement based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2012, 61(23): 234204.
许振宇, 刘文清, 刘建国, 等. 基于可调谐半导体激光器吸收光谱的温度测量方法研究[J]. 物理学报, 2012, 61(23): 234204.

【97】Chen J Y, Liu J G, He J F, et al. Study of high temperature water vapor concentration measurement method based on absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3174-3177.
陈玖英, 刘建国, 何俊峰, 等. 基于吸收光谱原理的高温水汽浓度测量方法研究[J]. 光谱学与光谱分析, 2014, 34(12): 3174-3177.

【98】Chen J Y, Li C R, Zhou M, et al. Measurement of CO2, concentration at high-temperature based on tunable diode laser absorption spectroscopy[J]. Infrared Physics & Technology, 2017, 80: 131-137.

【99】Cristescu S M, Marchenko D, Mandon J, et al. Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives[J]. Applied Physics B, 2012, 110(2): 203-211.

【100】Liu J, Ruan J, Yao L, et al. Tunable diode laser absorption based velocity sensor for local field in hypersonic flows[C]∥Proceedings of Optics and Photonics for Energy and the Environment. November 14-17, 2016, Leipzig, Germany. Light, Energy and the Environment Congress, c2016: ETu2A.4.

【101】Jia L Q, Liu W Q, Kan R F, et al. Study on oxygen velocity measurement in wind tunnel by wavelength modulation-TDLAS technology[J]. Chinese Journal of Lasers, 2015, 42(7): 0715001.
贾良权, 刘文清, 阚瑞峰, 等. 波长调制-TDLAS技术测量风洞中氧气流速方法研究[J]. 中国激光, 2015, 42(7): 0715001.

【102】Wei W, Chang J, Huang Q J, et al. Water vapor concentration measurements using TDALS with wavelength modulation spectroscopy at varying pressures[J]. Sensor Review, 2017, 37(2): 172-179.

【103】Peng C, Chen G, Tang J P, et al. High-speed mid-infrared frequency modulation spectroscopy based on quantum cascade laser[J]. IEEE Photonics Technology Letters, 2016, 28(16): 1727-1730.

【104】D′Amato F, Mazzinghi P, Castagnoli F. Methane analyzer based on TDL′s for measurements in the lower stratosphere: design and laboratory tests[J]. Applied Physics B: Lasers and optics, 2002, 75(2/3): 195-202.

【105】Parvitte B, Zéninari V, Thiébeaux C, et al. Infrared laser heterodyne systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(5): 1193-1213.

【106】Sonnenfroh D M, Rawlins W T, Allen M G, et al. Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-CW quantum-cascade lasers[J]. Applied Optics, 2001, 40(6): 812-820.
[107] He J F, Kan R F, Xu Z Y, et al. Derivative spectrum and concentration inversion algorithm of tunable diode laser absorption spectroscopy oxygen measurement[J]. Acta Optica Sinica, 2014, 34(4): 0430003.
何俊峰, 阚瑞峰, 许振宇, 等. 可调谐二极管激光吸收光谱氧气测量中的导数光谱处理与浓度反演算法研究[J]. 光学学报, 2014, 34(4): 0430003.

【107】Green G L, O'' Haver T C. Derivative luminescence spectrometry[J]. Analytical Chemistry, 1974, 46(14): 2191-2196.

【108】Xia H, Liu W Q, Zhang Y J, et al. An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy[J]. Chinese Optics Letters, 2008, 6(6): 437-440.

【109】Wei M, Kan R F, Chen B, et al. Calibration-free wavelength modulation spectroscopy for gas concentration measurements using a quantum cascade laser[J]. Applied Physics B, 2017, 123(5): 149.

【110】Qu D S, Hong Y J, Wang G Y, et al. Measurements of gas temperature and component concentration based on calibration-free wavelength-modulation spectroscopy[J]. Acta Optica Sinica, 2013, 33(12): 1230001.
屈东胜, 洪延姬, 王广宇, 等. 基于免标定波长调制光谱技术的气体温度和组分浓度测量[J]. 光学学报, 2013, 33(12): 1230001.

【111】Pan H, Wang G Y, Song J L, et al. Application of calibration-free wavelength-modulation spectroscopy in measurements of gas temperature and concentration[J]. Infrared and Laser Engineering, 2014, 43(3): 956-960.
潘虎, 王广宇, 宋俊玲, 等. 免标定波长调制光谱在气体温度和浓度测量中的应用[J]. 红外与激光工程, 2014, 43(3): 956-960.

【112】Yao L, Liu W Q, Liu J G, et al. Measurements of CO2 concentration profile in troposphere based on balloon-borne TDLAS system[J]. Spectroscopy and Spectral Analysis, 2015, 35(10): 2787-2791.
姚路, 刘文清, 刘建国, 等. 球载TDLAS的对流层CO2浓度廓线探测[J]. 光谱学与光谱分析, 2015, 35(10): 2787-2791.

【113】Zhang Z F, Zou D B, Chen W L, et al. Detection of escaping NH3 based on TDLAS with multi-pass cells[J]. Journal of Optoelectronics Laser, 2013, 24(12): 2367-2371.

【114】Chen X, Yang C G, Hu M, et al. Highly-sensitive NO, NO2 and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy[J]. Chinese Physics B, 2018, 27(4): 040701.

【115】Wang L, Zhang Y, He Y, et al. A laser diode sensor for in-situ monitoring of H2S in the desulfurizing device[C]∥Proceedings of 2011 International Conference on Electronics and Optoelectronics, 29-31 July, 2011, Dalian, China, New York: IEEE, 2011, V4: 276-279.

【116】Chen D, Liu W, Zhang Y, et al. Fiber-distributed multi-channel open-path H2S sensor based on tunable diode laser absorption spectroscopy[J]. Chinese Optics Letters, 2007, 5(2): 121-124.

【117】Allemand B, Bruchet P, Champinot C, et al. Theoretical and experimental study of supersonic oxygen jets: industrial application in EAF[J]. Revue de Métallurgie, 2002, 98(6): 571-587.

【118】Deguchi Y, Kamimoto T, Wang Z Z, et al. Applications of laser diagnostics to thermal power plants and engines[J]. Applied Thermal Engineering, 2014, 73(2): 1453-1464.

【119】Wang A J, Yu D, Ye H, et al. Applications of optical measurement technology in pollution gas monitoring at thermal power plants[J]. Proceedings of SPIE, 2011, 8197: 819702.

【120】Wang Y, Wei Y B, Chang J, et al. Tunable diode laser absorption spectroscopy (TDLAS)-based detection of propane for explosion early warning by using a vertical cavity surface enhanced laser (VCSEL) source and principle component analysis (PCA) approach[J]. IEEE Sensors Journal, 2017, 15(17): 4975-4982.

【121】He C G, Zhang Y J, Chen C, et al. Signal detection circuit design of HCN measurement system based on TDLAS[J]. Proceedings of SPIE, 2016, 10157: 1015710.

【122】Cui X, Xu Y, Zhang X, et al. In-situ deposited flower-like Bi2MoO6, microspheres thin film based sensors for highly selective detection of ppb-level H2S at low temperature[J]. Sensors & Actuators B: Chemical, 2017, 247: 681-690.

【123】Zhang Z, Zou D, Chen W, et al. Online monitoring of escaped ammonia based on TDLAS[C]∥Proceedings of Nanophotonics, Nanoelectronics and Nanosensor, May 25-26, 2013, Wuhan, China. c2013: NSa3A. 22.

【124】Liu S. Towards aerial natural gas leak detection system based on TDLAS[J]. Proceedings of SPIE, 2014, 9299: 92990X.

【125】Zakrzewska B. Very sensitive optical system with the concentration and decomposition unit for explosive trace detection[J]. Metrology & Measurement Systems, 2015, 22(1): 101-110.

【126】Du Z H, Zhang Z Y, Zen W M, et al. Mid-infrared DFB-ICLs based sensor for odorous sulfocompounds monitoring[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 165-173.
杜振辉, 张哲远, 甄卫萌, 等. 基于中红外DFB-ICL激光器的硫系恶臭气体传感器[J]. 大气与环境光学学报, 2015, 10(2): 165-173.

【127】Pisano J T, Sauer C, Durbin T, et al. Measurement of low concentration NH3 in diesel exhaust using tunable diode laser adsorption spectroscopy (TDLAS)[J]. Sea Technical Papers, 2009: 1-10.

【128】Wang F, Huang Q X, Li N, et al. The tunable diode laser absorption spectroscopy for measurement of NH3 with particles[J]. Acta Physica Sinica, 2007, 56(7): 3867-3872.
王飞, 黄群星, 李宁, 等. 利用可调谐半导体激光光谱技术对含尘气体中NH3的测量[J]. 物理学报, 2007, 56(7): 3867-3872.

【129】Schlosser E, Fernholz T, Teichert H, et al. In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(11): 2347-2359.

【130】Qu Z, Steinvall E, Ghorbani R, et al. Tunable diode laser atomic absorption spectroscopy for detection of potassium under optically thick conditions[J]. Analytical Chemistry, 2016, 88(7): 3754-3760.

【131】Han X L. The study of technique for natural gas leak detection based on TDLAS[D]. Qingdao: China University of Petroleum (East China), 2009.
韩小磊. 基于TDLAS的天然气泄漏检测技术研究[D]. 青岛: 中国石油大学, 2009.

【132】Jenkins T P, Bergmans J L, Debarber P A, et al. In situ measurements of temperature in a coal-fired power plant using tunable diode laser absorption spectroscopy[C]∥American Flame Research Committee/Japanese Flame Research Committee 2004 Joint International Symposium, October 10-13, 2004, Maui.

【133】Walter M, Schfers W, Markus M, et al. Analysis and control of combustion in a waste combustion plant by means of tunable diode lasers[C]∥5th International Symposium on Gas Analysis by Tunable Diode Lasers, VDI Verlag, Düsseldorf, Germany, 1998.

【134】Ebert V, Fernholz T, Giesemann C, et al. Simultaneous diode-laser-based in situ, detection of multiple species and temperature in a gas-fired power plant[J]. Proceedings of the Combustion Institute, 2000, 28(1): 423-430.

【135】Hirmke J, Hempel F, Stancu G D, et al. Gas-phase characterization in diamond hot-filament CVD by infrared tunable diode laser absorption spectroscopy[J]. Vacuum, 2006, 80(9): 967-976.

【136】Chou S I, Baer D S, Hanson R K, et al. HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy[J]. Journal of Vacuum Science and Technology, 2001, 19(2): 477-484.

【137】Zhang S, Liu W Q, Zhang Y J, et al. Research of quantitative remote sensing of natural gas pipeline leakage based on laser absorption spectroscopy[J]. Acta Physica Sinica, 2012, 61(5): 050701.
张帅, 刘文清, 张玉钧, 等. 基于激光吸收光谱技术天然气管道泄漏定量遥测方法的研究[J]. 物理学报, 2012, 61(5): 050701.

【138】Chen D, Liu W Q, Zhang Y J, et al. Fiber-distributed multi-channel open-path H2S sensor based on tunable diode laser absorption spectroscopy[J]. Chinese Optics Letters, 2007, 5(2): 121-124.

【139】Kan R, Liu W, Zhang Y, et al. A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring[J]. Chinese Optics Letters, 2007, 5(1): 54-57.

【140】Zhang Z R, Pang T, Yang Y, et al. Development of a tunable diode laser absorption sensor for online monitoring of industrial gas total emissions based on optical scintillation cross-correlation technique[J]. Optics Express, 2016, 24(10): A943.

【141】Geng H, Zhang Y J, Liu W Q, et al. Acquisition method of high resolution spectra of ethanol vapor in near-IR range[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(1): 57-62.
耿辉, 张玉钧, 刘文清, 等. 酒精蒸汽近红外高分辨光谱获取方法研究[J]. 大气与环境光学学报, 2012, 7(1): 57-62.

【142】Tang Y Y, Liu W Q, Kan R F, et al. High sensitivity online detection of vehicle exhaust gas concentration based on quantum cascade laser (QCL)[C]∥Summary of the 2011 academic conference of the Chinese Academy of Optics. Beijing: Chinese Academy of Optics, 2011: 1.
汤媛媛, 刘文清, 阚瑞峰, 等. 基于量子级联激光器(QCL)高灵敏在线检测机动车尾气排放气体浓度[C]∥中国光学学会2011年学术大会摘要集. 北京: 中国光学学会, 2011: 1.

【143】Mikoajczyk J, Bielecki Z, Stacewicz T, et al. Detection of gaseous compounds with different techniques[J]. Metrology and Measurement Systems, 2016, 23(2): 205-224.

【144】Ghorbani R, Schmidt F M. Real-time breath gas analysis of CO and CO2, using an EC-QCL[J]. Applied Physics B, 2017, 123(5): 144.

【145】Bayrakli I. Breath analysis using external cavity diode lasers: a review[J]. Journal of Biomedical Optics, 2017, 22(4): 040901.

【146】Azhar M, Mandon J, Neerincx A H, et al. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath[J]. Applied Physics B, 2017, 123(11): 268.

【147】Stacewicz T, Bielecki Z, Wojtas J, et al. Detection of disease markers in human breath with laser absorption spectroscopy[J]. Opto-Electronics Review, 2016, 24(2): 82-94.

【148】Marchenko D, Neerincx A H, Mandon J, et al. A compact laser-based spectrometer for detection of C2H2, in exhaled breath and HCN in vitro[J]. Applied Physics B, 2015, 118(2): 275-280.

【149】Jiang C Y, Sun M X, Li Y X, et al. Breath analysis using laser spectroscopy techniques: Development and future[J]. Chinese Journal of Lasers, 2018, 45(2): 0207015.
姜琛昱, 孙美秀, 李迎新, 等. 激光光谱技术在呼吸气体分析中的发展与未来[J]. 中国激光, 2018, 45(2): 0207015.

【150】Tittel F K. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis[J]. Optical Engineering, 2010, 49(11): 111123.

【151】Wang Y, Nikodem M, Zhang E, et al. Shot-noiselimited faraday rotation spectroscopy for detection of nitric oxide isotopes in breath, urine, and blood[J]. Scientific Reports, 2015, 5(1): 9096.

【152】Fang Y X, Li M B, Chu F Y. The influence to global climate change of the methane releasing from the marine gas hydrate[J]. Progress in Geophysics, 2004, 19(2): 286-290.
方银霞, 黎明碧, 初凤友. 海底天然气水合物中甲烷逸出对全球气候的影响[J]. 地球物理学进展, 2004, 19(2): 286-290.

【153】Valentine D L, Kastner M, Wardlaw G D, et al. Biogeochemical investigations of marine methane seeps, Hydrate Ridge, Oregon[J]. Journal of Geophysical Research Biogeosciences, 2015, 110(G2): 1619-1622.

【154】Sommer S, Schmidt M, Linke P. Continuous inline mapping of a dissolved methane plume at a blowout site in the Central North Sea UK using a membrane inlet mass spectrometer: water column stratification impedes immediate methane release into the atmosphere[J]. Marine and Petroleum Geology, 2015, 68: 766-775.

【155】Short R T, Fries D P, Kerr M L, et al. Underwater mass spectrometers for in situ chemical analysis of the hydrosphere[J]. Journal of the American Society for Mass Spectrometry, 2001, 12(6): 676-682.

【156】Newman K R, Cormier M H, Weissel J K, et al. Active methane venting observed at giant pockmarks along the U.S mid-Atlantic shelf break[J]. Earth and Planetary Science Letters, 2008, 267(1/2): 341-352.

【157】Boulart C, Connelly D P, Mowlem M C. Sensors and technologies for in situ dissolved methane measurements and their evaluation using technology readiness levels[J]. TrAC Trends in Analytical Chemistry, 2010, 29(2): 186-195.

【158】Wankel S D, Huang Y W, Gupta M, et al. Characterizing thedistribution of methane sources and cycling in the deep sea via in situ stable isotope analysis[J]. Environmental Science and Technology, 2013, 47(3): 1478-1486.

【159】Arévalo-martínez D L, Beyer M, Krumbholz M, et al. A new method for continuous measurements of oceanic and atmospheric N2O, CO and CO2: performance of off-axis integrated cavity output spectroscopy (OA-ICOS) coupled to non-dispersive infrared detection (NDIR)[J]. Ocean Science, 2013, 9(6): 1071-1087.

【160】Gonzalez-Valencia R, Magana-Rodriguez F, Gerardo-Nieto O, et al. In situ measurement of dissolved methane and carbon dioxide in freshwater ecosystems by off-axis integrated cavity output spectroscopy[J]. Environmental Science and Technology, 2014, 48(19): 11421.

【161】Wang Z N. Development and feasibility investigation of cavity ringdown systems for trace dissolved gas detection[D]. Qingdao: Ocean University of China, 2014.
王振南. 激光腔衰荡光谱用于水中溶存气体探测的可行性实验研究[D]. 青岛: 中国海洋大学, 2014.

【162】Grilli R, Marrocco N, Desbois T, et al. SUBGLACIOR: an optical analyzer embedded in an Antarctic ice probe for exploring the past climate[J]. Review of Scientific Instruments, 2014, 85(11): 111301.

【163】Kasyutich V L, Martin P A. Towards a two-dimensional concentration and temperature laser absorption tomography sensor system[J]. Applied Physics B, 2010, 102(1): 149-162.

【164】Brown M, Herring G, Cabell K, et al. Optical measurements at the combustor exit of the HIFiRE 2 ground test engine[C]∥AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Jan. 9-12, 2012, Nashville, Tennessee. AIAA, 2012: 210-231.

【165】Verhoeven D. Limited-data computed tomography algorithms for the physical sciences[J]. Applied Optics, 1993, 32(20): 3736.

【166】Zhang T G. CT principle and algorithm[M]. Shanghai: Shanghai Jiao Tong University Press, 1992.
庄天戈. CT原理与算法[M]. 上海: 上海交通大学出版社, 1992.

【167】Qiu W, Pengpan T, Smith N D, et al. Evaluating iterative algebraic algorithms in terms of convergence and image quality for cone beam CT[J]. Computer Methods and Programs in Biomedicine, 2013, 109(3): 313-322.

【168】Medoff B P, Brody W R, Nassi M, et al. Iterative convolution backprojection algorithms for image reconstruction from limited data[J]. Journal of the Optical Society of America, 1983, 73(11): 1493-1500.

【169】Llacer J, Meng J D. Matrix-based image reconstruction methods for tomography[J]. IEEE Transactions on Nuclear Science, 1985, 32(1): 855-864.

【170】Xin M, Jin X, Wang G, et al. Two-dimensional imaging of gas temperature and concentration based on hyperspectral tomography[J]. Proceedings of SPIE, 2016, 10155: 1015510.

【171】Song J L, Hong Y J, Wang G Y, et al. Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy[J]. Applied Physics B, 2013, 112(4): 529-537.

【172】Hanson R K, Kuntz P A, Kruger C H. High-resolution spectroscopy of combustion gases using a tunable IR diode laser[J]. Applied Optics, 1977, 16(8): 2045

【173】Hanson R K. High-resolution spectroscopy of shock-heated gases using a tunable infrared diode laser[C]∥Proceedings of the Eleventh International Symposium, Seattle, Wash., July 11-14, 1977. Seattle: University of Washington Press, 1978: 432-438.

【174】Sappey A D, Masterson P, Huelson E, et al. Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software[J]. Combustion Science and Technology, 2011, 183(11): 1282-1295.

【175】Jackson K, Gruber M, Barhorst T. The HIFiRE flight 2 experiment: an overview and status update[C]∥45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. August 02-05, 2009, Denver, Colorado USA. American Institute of Aeronautics and Astronautics, c2009: 5029.

【176】Lin X, Yu X L, Li F, et al. CO concentration and temperature measurements in a shock tube for Martian mixtures by coupling OES and TDLAS[J]. Applied Physics B, 2012, 110(3): 401-409.

【177】Bain, James R P. Near infrared tunable diode laser spectroscopy for aero engine related applications[D]. Britain: University of Strathclyde, 2012.

【178】Upschulte B L, Miller M F, Allen M G. Diode laser sensor for gasdynamic measurements in a model scramjet combustor[J]. AIAA Journal, 2000, 38(7): 1246-1252.

【179】Wehe S, Baer D, Hanson R, et al. Tunable diode-laser absorption measurements of temperature, velocity, and H2O in hypervelocity flows[C]∥Proceedings of the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 6-9, 1997, Seattle, WA, USA. AIAA, 1997: 3267.

【180】Xia H H, Kan R F, Xu Z Y, et al. Measurements of axisymmetric temperature and H2O concentration distributions on a circular flat flame burner based on tunable diode laser absorption tomography[J]. Proceedings of SPIE, 2016, 10156: 101560S.

【181】Drake M C, Fansler T D, Solomon A S, et al. Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine[M]. Warrendale, PA, USA: SAE International, 2003.

【182】Hentschel W, Grote A, Langer O. Measurement of wall film thickness in the intake manifold of a standard production SI engine by a spectroscopic technique[M]. Warrendale, PA, USA: SAE International, 1997.

【183】Mawhinney J R, Richardson J K. A review of water mist fire suppression research and development, 1996[J]. Fire Technology, 1997, 33(1): 54-90.

【184】Yang H N, Guo X L, Su M X, et al. Liquid-water film-thickness online measurement in a flow channel by TDLAS[J]. Chinese Journal of Lasers, 2014, 41(12): 1208010.
杨荟楠, 郭晓龙, 苏明旭, 等. 基于TDLAS技术在线测量气流道内液膜动态厚度[J]. 中国激光, 2014, 41(12): 1208010.

【185】Yang H, Greszik D, Wlokas I, et al. Tunable diode laser absorption sensor for the simultaneous measurement of water film thickness, liquid- and vapor-phase temperature[J]. Applied Physics B, 2011, 104(1): 21-27.

【186】Yang H N, Guo X L, Zhou W, et al. Investigation on liquid film of urea–water solutions with diode laser absorption spectroscopy[J]. Experiments in Fluids, 2015, 56(4): 1-7.

【187】Pan R, Jeffries J B, Dreier T, et al. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy[J]. Applied Physics B, 2016, 122(1): 4.

【188】Water Structure and Science. Liquid water is not a bit player in the theatre of life—it′s the headline act[EB/OL]. [2018-04-02]. http: ∥www1.lsbu.ac.uk/water/water_structure_science.html.

【189】Maréchal Y. The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data[J]. Journal of Molecular Structure, 2011, 1004(1/2/3): 146-155.

【190】Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-μm wavelength region[J]. Applied Optics, 1973, 12(3): 555-563.

【191】Kou L H, Labrie D, Chylek P. Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range[J]. Applied Optics, 1993, 32(19): 3531-3340.

【192】Mouza A A, Vlachos N A, Paras S V, et al. Measurement of liquid film thickness using a laser light absorption method[J]. Experiments in Fluids, 2000, 28(4): 355-359.

【193】Porter J M, Jeffries J B, Hanson R K. Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness[J]. Applied Physics B, 2010, 102(2): 345-355.

引用该论文

Nie Wei,Kan Ruifeng,Yang Chenguang,Chen Bing,Xu Zhenyu,Liu Wenqing. Research Progress on the Application of Tunable Diode Laser Absorption Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911001

聂伟,阚瑞峰,杨晨光,陈兵,许振宇,刘文清. 可调谐二极管激光吸收光谱技术的应用研究进展[J]. 中国激光, 2018, 45(9): 0911001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF