首页 > 论文 > 激光技术 > 42卷 > 5期(pp:633-637)

移频延时自外差法的DFB激光器线宽测量

Line-width measurement of DFB laser based on frequency shift delay self-heterodyning method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了测量分布反馈(DFB)单模半导体激光器线宽, 采用一种新颖的基于马赫-曾德尔干涉结构的光纤自外差测量方案, 设计了一套全光纤延时自外差法测量系统, 并进行了理论分析。在此基础上搭建了延时光纤长度分别为900m,3000m和6000m的窄带线宽测量系统, 对实验室一台中心波长为1550nm、标称线宽值为800kHz的DFB单模半导体激光器光源进行了测试, 测得激光器线宽值分别为951.566kHz,832.471kHz和802.221kHz, 并对所设计的方案进行了模拟仿真验证。结果表明, 与模拟仿真结果作对比, 延时光纤长度为6000m时的窄带线宽测量系统最优, 其误差在3%之内, 证明了所用自外差干涉原理的合理性和准确性。全光纤移频延时自外差法对测量DFB激光器线宽具有优越性和重要的实用价值。

Abstract

In order to measure the line-width of distributed feedback(DFB) diode single mode semiconductor laser, novel optical fiber self-heterodyne measurement scheme based on Mach-Zehnder interference structure was adopted and a set of all fiber time-delay self-heterodyne measurement system was designed. After theoretical analysis, narrow band line-width measurement system with time-delay fiber length of 900m, 3000m and 6000m was set up. A DFB single mode laser source with center wavelength of 1550nm and nominal line-width of 800kHz was tested. The measured line-width values of laser were 951.566kHz, 832.471kHz and 802.221kHz respectively. The designed scheme is verified by simulation. The results show that, compared with the simulation results, narrowband line-width measurement system with the length of 6000m is optimal, and its error is within 3%, which proves the rationality and accuracy of self-heterodyne interference principle. All fiber frequency shift delay self-heterodyne method has advantages and practical value for measuring the line-width of DFB lasers.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.3;TN248.4

DOI:10.7510/jgjs.issn.1001-3806.2018.05.010

所属栏目:激光与光电子技术应用

基金项目:陕西省教育厅2016年度专项科学研究计划资助项目(16JK1370)

收稿日期:2017-11-12

修改稿日期:2017-12-25

网络出版日期:--

作者单位    点击查看

王可宁:西安工业大学 光电工程学院, 西安 710021
刘允雷:西安工业大学 光电工程学院, 西安 710021
陈海滨:西安工业大学 光电工程学院, 西安 710021
郭子龙:西安工业大学 光电工程学院, 西安 710021

联系人作者:王可宁(77319436@qq.com)

备注:王可宁(1975-), 女, 副教授, 主要从事光电检测技术的研究。

【1】WANG H X, CHEN J D, CHANG T Y, et al. Research of modulation characteristics of distributed feedback laser[J]. Laser Technology, 2017, 41(6): 836-840 (in Chinese).

【2】WEI Zh P. Narrow linewidth laser spectral width measurement based on time delay self-heterodyne method[J]. Optics and Optoelectronics Technology, 2015, 13(3): 38-40(in Chinese).

【3】JIA Y D, OU P, YANG Y H, et al. Short fiber delay self heterodyne method to measure linewidth of narrow linewidth laser[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5): 568-571(in Chinese).

【4】PENG J X. Research on narrow linewidth laser linewidth measurement system[D].Beijing: Beijing University of Posts and Telecommunications, 2015: 2-3 (in Chinese).

【5】OKOSHI T, KIKUCHI K, NAKAYAMA A. Novel method for high resolution measurement of laser output spectrum[J]. Electron Lett-ers, 1980, 16(16): 630-631.

【6】WU T, HUI R Q, ZHANG J P, et al. Full-fiber dual-window high-resolution delay self-heterodyne measurement system[J]. Journal of Beijing University of Posts and Telecommunications, 1990, 13(2): 1-6(in Chinese).

【7】XIE D H,DENG D P, GUO L, et al. Narrow line width laser line width measurement method [J]. Laser & Optoelectronics Progress, 2013, 50(1): 10006(in Chinese).

【8】HU J B, LI M P. Design of novel tunable semiconductor lasers in optical fiber communication systems[J]. Laser Technology, 2016, 40(2): 280-283(in Chinese).

【9】FENG S Ch. Multiwavelength single longitudinal mode fiber laser [D]. Beijing: Beijing Jiaotong University, 2010: 111-116(in Chin-ese).

【10】HAN M, WANG A. Analysis of los-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement[J]. Applied Physics, 2005, B81(23): 53-58.

【11】YU B L,YANG J R,YANG Y H, et al. Zero-beat measurement of narrow linewidth laser [J]. Chinese Journal of Lasers, 2001, 28 (4): 351-354(in Chinese).

【12】DONG Y B. Study of related quantumeffect induced by electromagnetic induced coherent medium [D]. Taiyuan: Shanxi University, 2006: 39-45(in Chinese).

【13】SUN X H. Single longitudinal mode fiber laser and its linewidth measurement [D]. Beijing: Beijing Jiaotong University, 2008: 40-52(in Chinese).

【14】CAO Ch Y, YAO Q, RAO W, et al. Measurement of linewidth of unbalanced fiber interferometer with narrow linewidth laser[J]. Chinese Journal of Lasers, 2011, 38(5): 508005 (in Chinese).

【15】ZHOU W, CHONG K M, GUO H. Linewidth measurement of Littrow structure semiconductor laser with improved methods [J]. Physics Letters, 2008, A372(23): 4327-4332.

【16】XIAO H J,WANG X,MA Y, et al. Linewidth measurement of na-rrow-linewidth fiber laser based on DSHI [J].Opto-Electronics Engineering, 2010, 37(8): 57-61(in Chinese).

【17】LIU J W, DU Zh H, GAO D Y, et al. Research on the dynamic characteristics of semiconductor laser tuning [J]. Laser Journal, 2012, 32(6): 6-10(in Chinese).

【18】GAO D Y. Research and instrument development of quasi-continuous tuning laser absorption spectroscopy [D]. Tianjin: Tianjin University, 2011: 21-25 (in Chinese).

引用该论文

WANG Kening,LIU Yunlei,CHEN Haibin,GUO Zilong. Line-width measurement of DFB laser based on frequency shift delay self-heterodyning method[J]. Laser Technology, 2018, 42(5): 633-637

王可宁,刘允雷,陈海滨,郭子龙. 移频延时自外差法的DFB激光器线宽测量[J]. 激光技术, 2018, 42(5): 633-637

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF