首页 > 论文 > 液晶与显示 > 33卷 > 8期(pp:690-696)

基于Mask R-CNN的ORB去误匹配方法

ORB removal mis-matching method based on Mask R-CNN

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了提高多目标图像的ORB匹配的正确率, 提出一种基于Mask R-CNN的图像ORB去除误匹配方法, 该算法首先通过Faster R-CNN方法对图像进行识别, 运用区域推荐网络得到矩形框标注的感兴趣区域和类别标签, 该步骤可以得到感兴趣区域的预测类别和坐标信息, 并且通过全卷积网络卷积层进行像素级别校正, 得到像素级别的目标所属类别, 然后进行目标分割。最后在原有ORB特征点匹配基础上, 剔除两幅图像中相同目标分割区域以外的误匹配点。为了验证该方法的有效性, 对传统ORB匹配与基于本文方法的ORB匹配进行了仿真实验。改进后的算法, 使得在多目标环境下的目标的匹配精度提高了约18.6%, 结果表明, 本文算法较传统的ORB匹配算法的精度有一定提高。

Abstract

This paper presents an elimination image ORB mis-matching method based on Mask R-CNN in order to improve the accuracy of multi-target image matching ORB. First of all, the algorithm identifies the image by faster R-CNN method, and it uses Region Proposal Network to obtain the interest area and category labels which are marked by rectangular box. We can get the forecast category and coordinate information of the interest area by this step. And then we correct the pixel level by the convolution layer of the Fully Convolutional Networks, and get the category of target belonging to the pixel level and segment target. Finally, the mis-matching points outside the same target segmentation area are eliminated in the two images on the basis of the original ORB matching. At the same time, some simulation experiments which use the traditional ORB matching method and the ORB matching based on this paper is carried out to verify the effectiveness of this method. The results show that the algorithm is much more accurate than that of the traditional ORB matching algorithm. The improved algorithm makes the matching accuracy in the multi-target environment be increased by 18.6%.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP394.1;TH691.9

DOI:10.3788/yjyxs20183308.0690

所属栏目:图像处理

基金项目:国家自然科学基金(No.61602432)

收稿日期:2018-03-09

修改稿日期:2018-06-06

网络出版日期:--

作者单位    点击查看

张博:中国科学院 长春光学精密机械与物理研究所, 长春 130033中国科学院大学, 北京 100049
韩广良:中国科学院 长春光学精密机械与物理研究所, 长春 130033

联系人作者:韩广良(hangl@ciomp.ac.cn)

备注:张博(1991-), 男, 吉林辽源人, 硕士研究生, 2014年于吉林大学获得学士学位, 主要从事机器视觉方面的研究。E-mail: 1220792913@qq.com

【1】RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF [C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 2564-2571.

【2】ROSTEN E,DRUMMOND T. Machine learning for high-speed corner detection [C]//Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006: 430-443.

【3】CALONDER M, LEPETIT V, STRECHA C,et al. BRIEF: binary robust independent elementary features [C]//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece: Springer, 2010: 778-792.

【4】FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24(6): 381-395.

【5】SMITH S M, BRADY J M. SUSAN—a new approach to low level image processing [J]. International Journal of Computer Vision, 1997, 23(1): 45-78.

【6】张二磊, 马骏, 王晓田.一种改进的SURF彩色遥感图像配准算法[J].液晶与显示, 2017, 32(2): 144-152.
ZHANG E L, MA J, WANG X T. Improved SURF algorithm for color remote sensing image registration [J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(2): 144-152. (in Chinese)

【7】杨梦铎, 李凡长, 张莉.李群机器学习十年研究进展[J].计算机学报, 2015, 38(7): 1337-1356.
YANG M D, LI F C, ZHANG L. Advances in the study of lie group machine learning in recent ten years [J]. Chinese Journal of Computers, 2015, 38(7): 1337-1356. (in Chinese)

【8】HE K M, GKIOXARI G, DOLLR P, et al. Mask R-CNN [C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2980-2988.

【9】吴晓波, 安文斗, 杨钢.图像测量系统中的误差分析及提高测量精度的途径[J].光学 精密工程, 1997, 5(1): 133-141.
WU X B, AN W D, YANG G. Error analysing and approaches of improving measureing precision in image measuring system [J]. Optics and Precision Engineering, 1997, 5(1): 133-141. (in Chinese)

【10】GIRSHICK R. Fast R-CNN [C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448.

【11】GEIGER A, LENZ P, STILLER C,et al. Vision meets robotics: the KITTI dataset [J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.

引用该论文

ZHANG Bo,HAN Guang-liang. ORB removal mis-matching method based on Mask R-CNN[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(8): 690-696

张博,韩广良. 基于Mask R-CNN的ORB去误匹配方法[J]. 液晶与显示, 2018, 33(8): 690-696

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF