首页 > 论文 > 红外与激光工程 > 47卷 > 5期(pp:503002--1)

锑化物中红外单模半导体激光器研究进展

Research progress of antimonide infrared single mode semiconductor laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

锑化物材料因为其天然的禁带宽度较小的优势, 是2~4 μm波段半导体光电材料和器件研究的理想体系。近年来, 国内外在锑化物大功率半导体激光器方面的研究取得了很大的进展, 实现了大功率单管、阵列激光器的室温工作。然而, 由于锑化物材料与常见的半导体单模激光器制备工艺的不兼容性, 只有少数几个研究单位和公司掌握了锑化物单模激光器的制备技术。文中介绍了锑化物单模激光器常用的侧向耦合分布反馈激光器的基本原理, 分析了其设计的关键技术, 回顾了锑化物单模激光器的设计方案和制备技术, 并针对国内外锑化物单模激光器主要研究内容进行了总结。

Abstract

Antimonide materials are the ideal system for the semiconductor photoelectric materials and devices of 2-4 μm due to its narrow bandgap. In recent years, great progress has been made in the research of antimonide high-power semiconductor lasers at home and abroad, and the room temperature operation of high-power single-tube and array lasers has been achieved. However, due to the incompatibility of antimonide materials with common fabrication technique of semiconductor single-mode lasers, only a few research institutes and companies have mastered the preparation of antimonide single-mode lasers. In this paper, the basic principle of the laterally coupled distributed feedback laser was introduced and the key technologies of the laser were briefly analyzed. The design scheme and preparation technology of the antimony single mode laser were also reviewed and summarized.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN24

DOI:10.3788/irla201847.0503002

所属栏目:特约专栏-“红外半导体激光器”

基金项目:国家自然科学基金(61790581, 61790582, 61435012); 国家重点基础研究发展计划(2014CB643903)

收稿日期:2018-03-05

修改稿日期:2018-04-10

网络出版日期:--

作者单位    点击查看

杨成奥:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
谢圣文:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
黄书山:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
袁 野:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
张 一:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
尚金铭:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
张 宇:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
徐应强:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
牛智川:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049

联系人作者:杨成奥(yangchengao@semi.ac.cn)

备注:杨成奥(1990-), 博士生, 主要从事锑化物红外激光器方面的研究。

【1】Gaimard Q, Nguyen-Ba T, Larrue A, et al. Distributed-feedback GaSb-based laser diodes in the 2.3 to 3.3 μm wavelength range[J]. Semiconductor Lasers and Laser Dynamics Vi, 2014, 9134: 91341J.

【2】Civi?觢 S, Horká V, ?譒ime?觬ek T, et al. GaSb based lasers operating near 2.3 μm for high resolution absorption spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(13-14): 3066-3069.

【3】Yang R Q. Interband Cascade Lasers: from concept to devices and applications[C]//Conference on Lasers and Electro-Optics, 2008: 1-4.

【4】Shentu G L, Pelc J S, Wang X D, et al. Ultralow noise up-conversion detector and spectrometer for the telecom band[J]. Optics Express, 2013, 21(12): 13986-13991.

【5】Hosoda T, Feng T, Shterengas L, et al. High power cascade diode lasers emitting near 2 μm[J]. Applied Physics Letters, 2016, 108(13): 1089-1093.

【6】Dolginov L M, Druzhinina L V, Eliseev P G, et al. Injection heterolaser based on InGaAsSb four-component solid solution[J]. Soviet Journal of Quantum Electronics, 1978, 8(3): 703-704.

【7】Reboul J R, Cerutti L, Rodriguez J B, et al. Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si[J]. Applied Physics Letters, 2011, 99(12): 511-515.

【8】Apiratikul P, He L, Richardson C J K. 2 μm laterally coupled distributed-feedback GaSb-based metamorphic laser grown on a GaAs substrate[J]. Applied Physics Letters, 2013, 102(23): 231101.

【9】Rong J M, Xing E N, Zhang Y, et al. Low lateral divergence 2 mm InGaSb/AlGaAsSb broad-area quantum well lasers[J]. Optics Express, 2016, 24(7): 7246-7252.

【10】Zhang Y G, Li A Z, Zheng Y L, et al. MBE grown 2.0 μm InGaAsSb/AlGaAsSb MQW ridge waveguide laser diodes[J]. Journal of Crystal Growth, 2001, 227(227): 582-585.

【11】Li Z G, Liu G J, You M H, et al. 2.0 μm room temperature CW operation of InGaAsSb/AlGaAsSb laser with asymmetric waveguide structure[J]. Laser Physics, 2009, 19(6): 1230-1233.

【12】Zhang Yu, Tang Bao, Xu Yingqiang, et al. Molecular beam epitaxy growth of in GaSb/AlGaAsSb strained quantum well diode lasers[J]. Journal of Semiconductors, 2011, 32(10): 103002.

【13】Liao Y P, Zhang Y, Yang C A, et al. High-power, high-efficient GaSb-based quantum well laser diodes emitting at 2 mum[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 672-675.

【14】Chai X L, Zhang Y, Liao Y P, et al. High power GaSb-based 2.6 μm room-temperature laser diodes with InGaAsSb/AlGaAsSb type I quantum-wells[J]. Journal of Infrared and Millimeter Waves, 2017, 36(3): 257-260.

【15】Xing J L, Zhang Y, Xu Y Q, et al. High quality above 3 μm mid-infrared InGaAsSb/AlGaInAsSb multiple-quantum well grown by molecular beam epitaxy[J]. Chinese Physics B, 2014, 23(1): 454-457.

【16】Xing J L, Zhang Y, Liao Y P, et al. Room-temperature operation of 2.4 μm InGaAsSb/AlGaAsSb quantum-well laser diodes with low-threshold current density[J]. Chinese Physics Letters, 2014, 31(5): 054204.

【17】Gaimard Q, Nguyen-Ba T, Larrue A, et al. Distributed-feedback GaSb-based laser diodes in the 2.3 to 3.3 μm wavelength range[C]//Semiconductor Lasers and Laser Dynamics VI, 2014: 91341J.

【18】Liau Z L, Flanders D C, Walpole J N, et al. A novel GaInAsP/InP distributed feedback laser[J]. Applied Physics Letters, 1985, 46(3): 221-223.

【19】Kogelnik H. Coupled-wave theory of distributed feedback lasers[J]. Journal of Applied Physics, 1972, 43(5): 2327-2335.

【20】Yang C A, Zhang Y, Liao Y P, et al. 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography[J]. Chinese Physics B, 2016, 25(2): 024204.

【21】Haring K, Viheria?覿La?覿 J, Viljanen M R, et al. Laterally-coupled distributed feedback InGaSb/GaSb diode lasers fabricated by nanoimprint lithography[J]. Electronics Letters, 2010, 46(16): 1146-1147.

【22】Viheriala J, Haring K, Suomalainen S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography[J]. IEEE Photonics Technology Letters, 2016, 28(11): 1233-1236.

【23】Salhi A, Barat D, Romanini D, et al. Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy[J]. Applied Optics, 2006, 45(20): 4957-4965.

【24】Li H, Yang C A, Xie S W, et al. Laterally-coupled disributed feedback lasers with optimized gratings by holographic lithography etching[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 147-151.

引用该论文

Yang Cheng′ao,Xie Shengwen,Huang Shushan,Yuan Ye,Zhang Yi,Shang Jinming,Zhang Yu,Xu Yingqiang,Niu Zhichuan. Research progress of antimonide infrared single mode semiconductor laser[J]. Infrared and Laser Engineering, 2018, 47(5): 0503002

杨成奥,谢圣文,黄书山,袁 野,张 一,尚金铭,张 宇,徐应强,牛智川. 锑化物中红外单模半导体激光器研究进展[J]. 红外与激光工程, 2018, 47(5): 0503002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF