首页 > 论文 > 光学学报 > 38卷 > 9期(pp:912002--1)

浸没式光刻机对焦控制技术研究

Focus Control Technology in Immersion Lithography

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着大规模集成电路芯片制造步入十几纳米技术节点时代,光刻机的对焦控制变得越来越困难,其精度需要达到几十纳米。基于实际的光刻机对焦控制系统架构和光刻对焦原理,开展了浸没光刻对焦控制统计分析方法研究。根据系统结构分析出一系列误差源,研究了这些误差对总离焦误差的贡献方式及其与总离焦误差的关系。研究结果表明:由于光刻对焦误差中存在非正态分布的误差贡献项,常规正态统计分布使用的3σ原则就无法满足99.7%的对焦成功率要求;在28,14,7 nm技术节点集成电路芯片制造过程中,采用3σ和4σ原则得到的浸没光刻工艺总对焦成功率之差分别为28.4%、55.1%、62.9%。为了达到99.7%的对焦成功率,浸没式光刻机对焦控制应采用4σ原则。

Abstract

As large-scale integrated circuit chips manufacturing steps into the era of tens of nanometers technology node, the focus control of the lithography machine becomes more and more difficult with the precision of several tens of nanometers. In this paper, a statistical analysis method of immersion lithography focusing control is studied based on the architecture and lithography focusing principle of actual lithography machine focusing control system. A series of error sources are obtained based on the system structure, and their contribution way and relationship to the total defocus error are investigated. The results show that due to the non-normal distribution error contribution term in lithography focusing error, the 3σ principle used in the normal statistical distribution can not meet the 99.7% focusing success rate requirement. In the manufacturing process of 28,14,7 nm technology node integrated circuit chips, the difference of the total focusing success rates of immersion lithography can be as high as 28.4%, 55.1% and 62.9%, when 3σ and 4σ principles are used respectively. In order to reach 99.7% focusing success rate, the 4σ principle should be used in the focus control of immersion lithography.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.0912002

所属栏目:仪器,测量与计量

基金项目:国家科技重大专项(2017ZX02101006-003)

收稿日期:2018-02-26

修改稿日期:2018-03-28

网络出版日期:2018-04-04

作者单位    点击查看

段晨:中国科学院微电子研究所, 北京100029中国科学院大学, 北京 100049中国科学院微电子研究所微电子器件与集成技术重点实验室, 北京 100029
宗明成:中国科学院微电子研究所, 北京100029中国科学院大学, 北京 100049中国科学院微电子研究所微电子器件与集成技术重点实验室, 北京 100029
范伟:中国科学院微电子研究所, 北京100029中国科学院大学, 北京 100049中国科学院微电子研究所微电子器件与集成技术重点实验室, 北京 100029
孟璐璐:中国科学院微电子研究所, 北京100029中国科学院微电子研究所微电子器件与集成技术重点实验室, 北京 100029

联系人作者:宗明成(zongmingcheng@ime.ac.cn); 段晨(duanchen@ime.ac.cn);

【1】Yuan Q Y, Wang X Z, Shi W J, et al. Development of immersion lithography[J]. Laser & Optoelectronics Progress, 2006, 43(8): 13-20.
袁琼雁, 王向朝, 施伟杰, 等. 浸没式光刻技术的研究进展[J]. 激光与光电子学进展, 2006, 43(8): 13-20.

【2】Wei Y Y. Advanced lithography theory and application of VLSI[M]. Beijing: Science Press, 2016: 6-10.
韦亚一. 超大规模集成电路先进光刻理论与应用[M]. 北京: 科学出版社, 2016: 6-10.

【3】Bouchoms I, Leenders M,Graaf R D, et al. Extending 1.35 NA immersion lithography down to 1x nm production nodes[J]. Proceedings of SPIE, 2012, 8326: 83260L.

【4】Mih R D. How focus budgets are spent: limitations of advanced i-line lithography[J]. Proceedings of SPIE, 1996, 2726: 386-397.

【5】Jang J H, Park T, Park K D, et al. Focus control budget analysis for critical layers of flash devices[J]. Proceedings of SPIE, 2014, 9050: 90502F.

【6】Li J L, Hu S, Zhao L X. Control technique of wafer surface in dual-stage lithographic system[J]. Acta Optica Sinica, 2012, 32(12): 1223002.
李金龙, 胡松, 赵立新. 双工件台光刻机中的焦面控制技术[J]. 光学学报, 2012, 32(12): 1223002.

【7】Li X P, Chen F B. Measurement model of focusing and leveling measurement system for projection lithography tool[J]. Acta Optica Sinica, 2007, 27(11): 1987-1991.
李小平, 陈飞彪. 投影光刻机硅片调焦调平测量模型[J]. 光学学报, 2007, 27(11): 1987-1991.

引用该论文

Duan Chen,Zong Mingcheng,Fan Wei,Meng Lulu. Focus Control Technology in Immersion Lithography[J]. Acta Optica Sinica, 2018, 38(9): 0912002

段晨,宗明成,范伟,孟璐璐. 浸没式光刻机对焦控制技术研究[J]. 光学学报, 2018, 38(9): 0912002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF