首页 > 论文 > 光学学报 > 38卷 > 9期(pp:911002--1)

基于振幅分束调制的相位恢复成像技术

Beam Splitting Amplitude Modulation Phase Retrieval Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种分束调制技术来实现高精度单次曝光相位恢复成像,将待测光束用二维光栅分成一组彼此相同的衍射光束簇,并同时入射到一个结构已知的调制板上,当调制板为弱衍射物体时,在探测器上形成一组彼此相分开的衍射斑阵列。联合这些衍射光斑和弱衍射物体的透射函数,可通过一次曝光迭代计算出待测量光束的强度和相位信息,同时具有Gergberg-Saxton算法等单次曝光方法的成像速度快和相干叠层衍射成像算法等扫描成像技术的高信噪比和高精度等优点,对X射线成像和高功率激光光束在线监测等领域有重要的实用价值。

Abstract

A novel high-precision phase retrieval imaging method based on beam splitting amplitude modulation is proposed. The incident beam to be measured is split into many diffracted replicas by a two dimensional grating, and these diffracted beams are illuminated on a modulation plate with known structure. When the modulation plate is weakly scattered, the diffraction patterns formed on the detector are clearly separated with each other. Both the amplitude and phase of incident beam can be reconstructed iteratively by using the recorded diffraction patterns and the known structure of the modulation plate. This method has the high imaging speed of Gergberg-Saxton algorithm and the high precision of ptychographical iterative engine and potentially can be applied for X-ray imaging and online detection of high power laser.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751.2

DOI:10.3788/aos201838.0911002

所属栏目:成像系统

基金项目:国家自然科学基金(61675215)

收稿日期:2018-02-26

修改稿日期:2018-03-26

网络出版日期:2018-04-09

作者单位    点击查看

何西:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800中国科学院大学, 北京 100049
刘诚:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800
朱健强:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800

联系人作者:刘诚(Cheng.liu@hotmail.co.uk); 朱健强(jqzhu@siom.ac.cn);

【1】Mccutchen C W. Superresolution in microscopy and the Abbe resolution limit[J]. Journal of the Optical Society of America, 1967, 57(10): 1190-1192.

【2】Vainrub A, Pustovyy O, Vodyanoy V. Resolution of 90 nm (lambda/5) in an optical transmission microscope with an annular condenser[J]. Optics Letters, 2006, 31(19): 2855-2857.

【3】Pelliccia D, Sorrentino A, Bukreeva I, et al. X-ray phase contrast microscopy at 300 nm resolution with laboratory sources[J]. Optics Express, 2010, 18(15): 15998-16004.

【4】Erni R, Rossell M D, Kisielowski C, et al. Atomic-resolution imaging with a sub-50-pm electron probe[J]. Physical Review Letters, 2009, 102(9): 096101.

【5】Schroer C G. Focusing hard X-rays to nanometer dimensions using Fresnel zone plates[J]. Physical Review B, 2006, 74(3): 033405.

【6】Maser J, Stephenson G B, Vogt S, et al. Multilayer Laue lenses as high-resolution X-ray optics[C]. Design and Microfabrication of Novel X-Ray Optics II, 2004: 185-194.

【7】Haider M, Uhlemann S, Schwan E, et al. Electron microscopy image enhanced[J]. Nature, 1998, 392(392): 768-769.

【8】Inami W, Nakajima K, Miyakawa A, et al. Electron beam excitation assisted optical microscope with ultra-high resolution[J]. Optics Express, 2010, 18(12): 12897-12902.

【9】Gabor D. A new microscope principle[J]. Nature, 1948,161: 777-778.

【10】Hoppe W, Strube G. Beugung in inhomogenen Primrstrahlenwellenfeld. II. Lichtoptische Analogieversuche zur Phasenmessung von Gitterinterferenzen[J]. Acta Crystallographica, 1969, 25(4): 502-507.

【11】Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35:237-250.

【12】Yang G Z, Gu B Y. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 1981, 30(3): 410-413.
杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题[J]. 物理学报, 1981, 30(3): 410-413.

【13】Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1): 27-29.

【14】Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

【15】Zhao Y, Gao Z S, Dou J T, et al. A multi-wavelength gradient acceleration phase retrieval iterative algorithm[J]. Chinese Journal of Lasers, 2017, 44(1): 0109001.
赵彦, 高志山, 窦建泰, 等. 一种多波长梯度加速相位恢复迭代算法[J]. 中国激光, 2017, 44(1): 0109001.

【16】Faulkner H M, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

【17】Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.

【18】Yao Y D, Liu C, Pan X C, et al. Research status and development trend of PIE imaging method[J]. Chinese Journal of Lasers, 2016, 43(6): 0609001.
姚玉东, 刘诚, 潘兴臣, 等. PIE成像方法技术现状及发展趋势[J]. 中国激光, 2016, 43(6): 0609001.

【19】Rodenburg J M, Hurst A C, Cullis A G. Transmission microscopy without lenses for objects of unlimited size[J]. Ultramicroscopy, 2007, 107(2/3): 227-231.

【20】Pan X, Liu C, Zhu J. Single shot ptychographical iterative engine based on multi-beam illumination[J]. Applied Physics Letters, 2013, 103(17): 171105.

【21】Cohen O, Sidorenko P. Single-shot ptychography[J]. Optica, 2016, 3(1): 9-14.

【22】Zhang F, Rodenburg J M. Phase retrieval based on wave-front relay and modulation[J]. Physical Review B Condensed Matter, 2010, 82(12): 2511-2524.

【23】Zhang F, Chen B, Morrison G R, et al. Phase retrieval by coherent modulation imaging[J]. Nature Communications, 2016, 7: 13367.

【24】Tao H, Suhas P V, Pan X, et al. Lens-free coherent modulation imaging with collimated illumination[J]. Chinese Optics Letters, 2016, 14(7): 071203.

【25】Tao H, Veetil S P, Cheng J, et al. Measurement of the complex transmittance of large optical elements with modulation coherent imaging[J]. Applied Optics, 2015, 54(7): 1776-1781.

【26】Pan X, Veetil S P, Liu C, et al. On-shot laser beam diagnostics for high-power laser facility with phase modulation imaging[J]. Laser Physics Letters, 2016, 13(5): 055001.

引用该论文

He Xi,Liu Cheng,Zhu Jianqiang. Beam Splitting Amplitude Modulation Phase Retrieval Imaging[J]. Acta Optica Sinica, 2018, 38(9): 0911002

何西,刘诚,朱健强. 基于振幅分束调制的相位恢复成像技术[J]. 光学学报, 2018, 38(9): 0911002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF