首页 > 论文 > 光学学报 > 38卷 > 9期(pp:911003--1)

基于散斑照明的成像分辨率研究

Research on Imaging Resolution via Speckle Illumination

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

照明方式对光学成像系统的分辨率有重大影响。从光场的相干性理论出发,研究了影响多帧散斑照明下一阶自相关成像和强度涨落二阶自相关成像分辨率的主要因素。理论和数值模拟结果表明,辐照于物面上的散斑横向相干长度大小与一阶自相关成像和强度涨落二阶自相关成像的分辨率呈非单调关系。此外,与传统非相干成像相比,一阶自相关成像和强度涨落二阶自相关成像仅能轻微地提高成像分辨率,而强度涨落二阶自相关成像只是对一阶自相关成像的结果起锐化作用,并不能进一步提高成像分辨率。

Abstract

The lighting mode has great influence on the resolution of optical imaging system. Based on the coherence theory of light field, the main factor which influence the imaging resolution of first-order autocorrelation imaging and the second-order autocorrelation imaging of intensity fluctuation via multi-frame speckle illumination are studied. The theory and numerical simulation results show that the transverse coherence length of speckle on the object plane and the resolution of first-order autocorrelation imaging and the second-order autocorrelation imaging of intensity fluctuation are not monotonic relationship. In addition, compared with the traditional incoherent imaging, the first-order autocorrelation imaging and the second-order autocorrelation imaging of intensity fluctuation can only slightly improve the imaging resolution. The result of second-order autocorrelation imaging of intensity fluctuation is just the sharpening of the result of first-order autocorrelation imaging, which can′t further improve the imaging resolution.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.0911003

所属栏目:成像系统

基金项目:国家自然科学基金(61571427)

收稿日期:2018-02-28

修改稿日期:2018-04-02

网络出版日期:2018-04-23

作者单位    点击查看

王鹏威:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学, 北京 100049
龚文林:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800

联系人作者:龚文林(gongwl@siom.ac.cn)

【1】Max B, Wolf E. Principles of optics[M]. 7th ed. Cambridge: Cambridge University Press, 1999.

【2】Zhang E F, Liu W T, Chen P X. Ghost imaging with non-negative exponential speckle patterns[J]. Journal of Optics, 2015, 17(8): 085602.

【3】Luo C L, Cheng J. Ghost imaging with shaped incoherent sources[J]. Optics Letters, 2013, 38(24): 5381-5384.

【4】Min J H, Jang J, Keum D, et al. Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery[J]. Scientific Reports, 2013, 3: 2075.

【5】Mudry E, Belkebir K, Girard J, et al. Structured illumination microscopy using unknown speckle patterns[J]. Nature Photonics, 2012, 6(5): 312-315.

【6】Shechtman Y, Gazit S, Szameit A, et al. Super-resolution and reconstruction of sparse images carried by incoherent light[J]. Optics Letters, 2010, 35(8): 1148-1150.

【7】Gong W L, Han S S. High-resolution far-field ghost imaging via sparsity constraint[J]. Scientific Reports, 2015, 5:9280.

【8】Gong W L. High-resolution pseudo-inverse ghost imaging[J]. Photonics Research, 2015, 3(5): 234-237.

【9】Zhang P L, Gong W L, Shen X, et al. Improving resolution by the second-order correlation of light fields[J]. Optics Letters, 2009, 34(8): 1222-1224.

【10】Chen X H, Kong F H, Fu Q, et al. Sub-Rayleigh resolution ghost imaging by spatial low-pass filtering[J]. OpticsLetters, 2017, 42(24): 5290-5293.

【11】Oh J E, Cho Y W, Scarcelli G, et al. Sub-Rayleigh imaging via speckle illumination[J]. Optics Letters, 2013, 38(5): 682-684.

【12】Wang Y L, Wang F R, Liu R F, et al. Spatial sub-Rayleigh imaging analysis via speckle laser illumination[J]. Optics Letters, 2015, 40(22): 5323-5326.

【13】Goodman J W. Speckle phenomena in optics: Theory and applications[M]. Chao Q Z, Chen J B. Transl. Beijing: Science Press, 2009: 62-71.
古德曼. 光学中的散斑现象-理论和应用[M]. 曹其智, 陈家壁, 译. 北京: 科学出版社, 2009: 62-71.

【14】Glauber R J. Thequantum theory of optical coherence[J]. Physical Review, 1963, 130(6): 2529-2539.

引用该论文

Wang Pengwei,Gong Wenlin. Research on Imaging Resolution via Speckle Illumination[J]. Acta Optica Sinica, 2018, 38(9): 0911003

王鹏威,龚文林. 基于散斑照明的成像分辨率研究[J]. 光学学报, 2018, 38(9): 0911003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF