首页 > 论文 > 光学学报 > 38卷 > 9期(pp:914001--1)

一维边发射有机半导体光子晶体激光器设计

Design of One-Dimensional Edge-Emitting Organic Semiconductor Photonic Crystal Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于有机共轭聚合物聚[2-甲氧基-5-(2-乙基己氧基)-1,4-苯乙炔](MEH-PPV)的脊形波导,利用光子晶体特殊的光调制特性,模拟设计了一维边发射有机光子晶体激光器。利用光子晶体的带隙结构和带边效应构建了由光子晶体全反镜和透反镜形成的谐振腔,在谐振腔内的脊形波导上引入一维缺陷型光子晶体,利用光子晶体缺陷模特性抑制了多纵模竞争,并在此基础上分析了复合结构所导致的边界模效应,得出此类非金属微腔激光器腔长设计的经验公式。模拟结果表明该一维边发射有机光子晶体激光器可实现中心波长为588 nm、半峰全宽为0.131 nm的单纵模激光输出。

Abstract

A one-dimensional (1D) edge-emitting photonic crystal laser is designed based on the ridge waveguide of organic conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy) phenylenevinylene-1,4-diyl](MEH-PPV) and the special optical modulation characteristics of photonic crystals. The band gap structure and the band edge effect of photonic crystal are employed to construct the resonator formed by photonic crystal total mirror and partial transmission mirror. 1D photonic crystal defect component is introduced on the ridged waveguide in the resonator and suppresses effectively the mode competition based on the property of photonic crystal defect-mode. The boundary-mode effect caused by composite structure is analyzed, and empirical formula for the cavity length of this kind of non-metallic microcavity laser is obtained. The simulating result shows that a single longitudinal mode laser output with the central wavelength of 588 nm and the full width at half maximum of 0.131 nm is achieved in 1D edge-emitting organic photonic crystal laser.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN383+.2

DOI:10.3788/aos201838.0914001

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(61675238,61775244)

收稿日期:2018-03-08

修改稿日期:2018-04-02

网络出版日期:2018-04-11

作者单位    点击查看

李长伟:中央民族大学理学院, 北京 100081
陈笑:中央民族大学理学院, 北京 100081
蔡园园:北京交通大学理学院, 北京 100044
王晓青:中央民族大学理学院, 北京 100081
冯帅:中央民族大学理学院, 北京 100081
王义全:中央民族大学理学院, 北京 100081

联系人作者:陈笑(xchen4399@126.com); 李长伟(changweilidz@163.com);

【1】Liu L J, Kong X B, Liu Y G, et al. Enhancement of conversion eciency for an organic semiconductor laser based on a holographic polymer dispersed liquid crystal[J]. Acta Physica Sinica, 2017, 66(24): 244204.
刘丽娟, 孔晓波, 刘永刚, 等. 基于液晶/聚合物光栅的高转化效率有机半导体激光器[J]. 物理学报, 2017, 66(24): 244204.

【2】Yang H S. Fabrications of white organic light-emitting device based on fluorescent sub-monolayer combine with phosphorescent doping layer[J]. Acta Optica Sinica, 2013, 33(3): 0323005.
杨惠山. 荧光亚单层结合磷光掺杂层制备白色有机发光器件[J]. 光学学报, 2013, 33(3): 0323005.

【3】Cai Y Y, Chen X, Li N, et al. Electrical pumping organic quasi-crystal laser and its properties[J], Acta Optica Sinica, 2015, 35(6): 0614002.
蔡园园, 陈笑, 李宁, 等. 电抽运有机准晶光子晶体激光器及其特性研究[J]. 光学学报, 2015, 35(6): 0614002.

【4】Yang G, Chen X, Wang Y, et al. Lasing characteristic of organic octagonal quasicrystal slabs with single-defect microcavity at low-index contrast[J]. Optics Express, 2013, 21(9): 11457-11464.

【5】Liu X, Py C, Tao Y, et al. Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative[J]. Applied Physics Letters, 2004, 84(15): 2727-2729.

【6】Deng S H, Li W C, Huang W B, et al. All-organic two-dimensional photonic crystal laser based on holographic polymer dispersed liquid crystals[J]. Acta Physica Sinica, 2011, 60(8): 086103.
邓舒鹏, 李文萃, 黄文彬, 等. 基于全息聚合物分散液晶的有机二维光子晶体激光器的研究[J]. 物理学报, 2011, 60(8): 086103.

【7】Liang X Y, Chen X, Wang Y Q, et al. Light propagation in two-dimensional organic octagonal quasiperiodic photonic crystal slabs[J]. Acta Optica Sinica, 2013, 33(1): 0116002.
梁馨元, 陈笑, 王义全, 等. 二维八重准晶有机光子晶体平板的光学传播特性[J]. 光学学报, 2013, 33(1): 0116002.

【8】Luo D, Li Y, Xu X W, et al. Lasing from organic quasicrystal fabricated by seven- and nine-beam interference[J]. Optics Express, 2016, 24(11): 12330-12335.

【9】Cai Y, Chen X, Li N, et al. Electrically pumped photonic crystal laser constructed with organic semiconductors[J]. Laser Physics, 2017, 27(3): 035801.

【10】Tessler N, Denton G J, Friend R H. Lasing from conjugated-polymer microcavities[J]. Nature, 1996, 382(6593): 695-697.

【11】Vasdekis A E, Turnbull G A, Samuel I D W, et al. Low threshold edge emitting polymer distributed feedback laser based on a square lattice[J]. Applied Physics Letters, 2005, 86(16): 161102.

【12】Painter O, Lee R K, Scherer A, et al. Two-dimensional photonic band-gap defect mode laser[J]. Science, 1999, 284(5421): 1819-1821.

【13】Zhou X Y, Zhao S Y, Ma X L, et al. Lowvertial devergence angle and high brightness photonic crystal semiconductor laser[J]. Chinese Journal of Lasers, 2017, 44(2): 0201010.
周旭彦, 赵少宇, 马晓龙, 等. 低垂直发散角高亮度光子晶体半导体激光器[J]. 中国激光, 2017, 44(2): 0201010.

【14】Wang H, Ouyang Z B, Han Y L, et al. Threshold of one-dimensional photonic crystal band edge laser[J]. Acta Optica Sinica, 2006, 26(12): 1813-1818.
王宏, 欧阳征标, 韩艳玲, 等. 一维光子晶体带边激光器的阈值特性分析[J]. 光学学报, 2006, 26(12): 1813-1818.

【15】Cai Y Y, Wang Z, Chen X, et al. The coupling properties of defect modes in organic octagonal quasicrystals under low index contrast[J]. Acta Optica Sinica, 2018, 38(2): 0216003.
蔡园园, 王智, 陈笑, 等. 低折射率对比度下有机八重准周期光子晶体缺陷模的耦合特性[J]. 光学学报, 2018, 38(2): 0216003.

【16】Qian C J, Xie X, Yang J N, et al. Coupling of two-dimensional slab photonic crystal micro-cavities and waveguides[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030001.
钱琛江, 谢昕, 杨静南, 等. 二维平板光子晶体微腔与波导的耦合[J]. 激光与光电子学进展, 2017, 54(3): 030001.

【17】Tsutsumi N, Ishibashi T. Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator[J]. Optics Express, 2009, 17(24): 21698-21703.

【18】Park H G, Kim S H, Kwon S H, et al. Electrically driven single-cell photonic crystal laser[J]. Science, 2004, 305(5689): 1444-1447.

【19】Noda S, Yokoyama M, Imada M, et al. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design[J]. Science, 2001, 293(5532): 1123-1125.

【20】Du X Y, Zheng W H, Ren G, et al. Slow wave effect of 2-D photonic crystal coupled cavity array[J]. Acta Physica Sinica, 2008, 57(1): 571-575.
杜晓宇, 郑婉华, 任刚, 等. 二维光子晶体耦合腔阵列的慢波效应研究[J]. 物理学报, 2008, 57(1): 0571-575.

【21】Heeger A J.Semiconducting and metallic polymers: the fourth generation of polymeric materials (nobel lecture)[J]. Angewandte Chemie International Edition, 2001, 40(14): 2591-2611.

【22】Dowling J P. Mirror on the wall: you′re omnidirectional after all?[J]. Science, 1998, 282(5395): 1841-1842.

【23】Wang X Y, Xu Y M, Zhang C P, et al. Calculation of optical parameter of MEH-PPV film[J]. Acta Photonica Sinica, 2005, 34(5): 746-749.
王晓阳, 徐艳梅, 张春平, 等. MEH-PPV 薄膜的光学参数计算[J]. 光子学报, 2005, 34(5): 746-749.

【24】Liu Q N. A new method of study the defect mode of one-dimensional photonic crystal[J]. Laser & Infrared, 2008, 38(8): 799-801.
刘启能. 一种研究一维光子晶体缺陷模的新方法——解析法[J]. 激光与红外, 2008, 38(8): 799-801.

引用该论文

Li Changwei,Chen Xiao,Cai Yuanyuan,Wang Xiaoqing,Feng Shuai,Wang Yiquan. Design of One-Dimensional Edge-Emitting Organic Semiconductor Photonic Crystal Lasers[J]. Acta Optica Sinica, 2018, 38(9): 0914001

李长伟,陈笑,蔡园园,王晓青,冯帅,王义全. 一维边发射有机半导体光子晶体激光器设计[J]. 光学学报, 2018, 38(9): 0914001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF